
PHPUnit Manual
Sebastian Bergmann

PHPUnit Manual
Sebastian Bergmann

Publication date Edition for PHPUnit 5.4. Updated on 2016-06-11.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Sebastian Bergmann

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

iii

Table of Contents
1. Installing PHPUnit ... 1

Requirements .. 1
PHP Archive (PHAR) .. 1

Windows ... 1
Verifying PHPUnit PHAR Releases ... 2

Composer ... 4
Optional packages ... 4

2. Writing Tests for PHPUnit .. 5
Test Dependencies ... 5
Data Providers .. 8
Testing Exceptions ... 12
Testing PHP Errors .. 14
Testing Output .. 15
Error output .. 16

Edge cases ... 18
3. The Command-Line Test Runner .. 20

Command-Line Options .. 20
4. Fixtures .. 27

More setUp() than tearDown() ... 29
Variations ... 29
Sharing Fixture ... 29
Global State .. 30

5. Organizing Tests .. 32
Composing a Test Suite Using the Filesystem .. 32
Composing a Test Suite Using XML Configuration ... 33

6. Risky Tests ... 34
Useless Tests .. 34
Unintentionally Covered Code ... 34
Output During Test Execution ... 34
Test Execution Timeout .. 34
Global State Manipulation ... 34

7. Incomplete and Skipped Tests .. 35
Incomplete Tests ... 35
Skipping Tests .. 36
Skipping Tests using @requires ... 37

8. Database Testing .. 39
Supported Vendors for Database Testing ... 39
Difficulties in Database Testing ... 39
The four stages of a database test ... 40

1. Clean-Up Database ... 40
2. Set up fixture .. 40
3–5. Run Test, Verify outcome and Teardown .. 40

Configuration of a PHPUnit Database TestCase .. 41
Implementing getConnection() ... 41
Implementing getDataSet() .. 42
What about the Database Schema (DDL)? ... 42
Tip: Use your own Abstract Database TestCase .. 42

Understanding DataSets and DataTables .. 43
Available Implementations .. 44
Beware of Foreign Keys ... 52
Implementing your own DataSets/DataTables ... 52

The Connection API .. 53
Database Assertions API ... 54

Asserting the Row-Count of a Table ... 54
Asserting the State of a Table .. 54

PHPUnit Manual

iv

Asserting the Result of a Query ... 55
Asserting the State of Multiple Tables ... 55

Frequently Asked Questions .. 56
Will PHPUnit (re-)create the database schema for each test? 56
Am I required to use PDO in my application for the Database Extension to work? 56
What can I do, when I get a “Too much Connections” Error? 56
How to handle NULL with Flat XML / CSV Datasets? 57

9. Test Doubles ... 58
Stubs ... 58
Mock Objects ... 63
Prophecy .. 69
Mocking Traits and Abstract Classes .. 69
Stubbing and Mocking Web Services .. 70
Mocking the Filesystem .. 72

10. Testing Practices .. 75
During Development .. 75
During Debugging ... 75

11. Code Coverage Analysis .. 77
Software Metrics for Code Coverage .. 77
Whitelisting Files .. 78
Ignoring Code Blocks ... 78
Specifying Covered Methods ... 79
Edge Cases ... 81

12. Other Uses for Tests ... 82
Agile Documentation ... 82
Cross-Team Tests .. 82

13. Logging .. 84
Test Results (XML) ... 84
Test Results (TAP) .. 85
Test Results (JSON) ... 85
Code Coverage (XML) ... 86
Code Coverage (TEXT) .. 86

14. Extending PHPUnit .. 87
Subclass phpunit\framework\TestCase ... 87
Write custom assertions .. 87
Implement PHPUnit_Framework_TestListener .. 88
Subclass PHPUnit_Extensions_TestDecorator ... 90
Implement PHPUnit_Framework_Test ... 90

A. Assertions .. 93
assertArrayHasKey() .. 93
assertClassHasAttribute() .. 93
assertArraySubset() .. 94
assertClassHasStaticAttribute() ... 95
assertContains() ... 95
assertContainsOnly() .. 97
assertContainsOnlyInstancesOf() .. 98
assertCount() ... 99
assertEmpty() .. 99
assertEqualXMLStructure() .. 100
assertEquals() .. 102
assertFalse() .. 106
assertFileEquals() ... 107
assertFileExists() .. 108
assertGreaterThan() .. 108
assertGreaterThanOrEqual() ... 109
assertInfinite() ... 110
assertInstanceOf() .. 110
assertInternalType() .. 111

PHPUnit Manual

v

assertJsonFileEqualsJsonFile() .. 112
assertJsonStringEqualsJsonFile() ... 112
assertJsonStringEqualsJsonString() .. 113
assertLessThan() .. 114
assertLessThanOrEqual() ... 115
assertNan() .. 115
assertNull() ... 116
assertObjectHasAttribute() ... 117
assertRegExp() .. 117
assertStringMatchesFormat() .. 118
assertStringMatchesFormatFile() ... 119
assertSame() .. 120
assertStringEndsWith() .. 121
assertStringEqualsFile() ... 122
assertStringStartsWith() ... 122
assertThat() ... 123
assertTrue() ... 125
assertXmlFileEqualsXmlFile() .. 126
assertXmlStringEqualsXmlFile() ... 127
assertXmlStringEqualsXmlString() .. 128

B. Annotations .. 129
@author ... 129
@after .. 129
@afterClass ... 129
@backupGlobals .. 130
@backupStaticAttributes ... 130
@before ... 131
@beforeClass .. 131
@codeCoverageIgnore* .. 132
@covers ... 132
@coversDefaultClass .. 133
@coversNothing .. 133
@dataProvider ... 134
@depends ... 134
@expectedException .. 134
@expectedExceptionCode ... 134
@expectedExceptionMessage ... 135
@expectedExceptionMessageRegExp .. 135
@group .. 136
@large ... 136
@medium ... 136
@preserveGlobalState ... 136
@requires ... 137
@runTestsInSeparateProcesses ... 137
@runInSeparateProcess ... 137
@small ... 138
@test ... 138
@testdox .. 138
@ticket .. 138
@uses .. 138

C. The XML Configuration File ... 140
PHPUnit ... 140
Test Suites .. 141
Groups ... 142
Whitelisting Files for Code Coverage .. 142
Logging .. 142
Test Listeners .. 143
Setting PHP INI settings, Constants and Global Variables ... 144

PHPUnit Manual

vi

Configuring Browsers for Selenium RC ... 144
D. Index ... 146
E. Bibliography ... 151
F. Copyright .. 152

vii

List of Tables
2.1. Methods for testing output .. 16
7.1. API for Incomplete Tests .. 36
7.2. API for Skipping Tests ... 37
7.3. Possible @requires usages .. 37
9.1. Matchers .. 68
A.1. Constraints ... 124
B.1. Annotations for specifying which methods are covered by a test 132

viii

List of Examples
2.1. Testing array operations with PHPUnit ... 5
2.2. Using the @depends annotation to express dependencies .. 6
2.3. Exploiting the dependencies between tests ... 7
2.4. Test with multiple dependencies .. 7
2.5. Using a data provider that returns an array of arrays .. 8
2.6. Using a data provider with named datasets .. 9
2.7. Using a data provider that returns an Iterator object ... 10
2.8. The CsvFileIterator class .. 10
2.9. Combination of @depends and @dataProvider in same test ... 11
2.10. Using the expectException() method ... 12
2.11. Using the @expectedException annotation ... 13
2.12. Expecting a PHP error using @expectedException ... 14
2.13. Testing return values of code that uses PHP Errors .. 14
2.14. Testing the output of a function or method ... 15
2.15. Error output generated when an array comparison fails ... 16
2.16. Error output when an array comparison of an long array fails 17
2.17. Edge case in the diff generation when using weak comparison 18
3.1. Named data sets .. 23
3.2. Filter pattern examples ... 24
3.3. Filter shortcuts .. 24
4.1. Using setUp() to create the stack fixture .. 27
4.2. Example showing all template methods available .. 28
4.3. Sharing fixture between the tests of a test suite ... 30
5.1. Composing a Test Suite Using XML Configuration ... 33
5.2. Composing a Test Suite Using XML Configuration ... 33
7.1. Marking a test as incomplete ... 35
7.2. Skipping a test .. 36
7.3. Skipping test cases using @requires ... 37
9.1. The class we want to stub ... 58
9.2. Stubbing a method call to return a fixed value .. 59
9.3. Using the Mock Builder API can be used to configure the generated test double class 59
9.4. Stubbing a method call to return one of the arguments ... 60
9.5. Stubbing a method call to return a reference to the stub object 60
9.6. Stubbing a method call to return the value from a map ... 61
9.7. Stubbing a method call to return a value from a callback .. 61
9.8. Stubbing a method call to return a list of values in the specified order 62
9.9. Stubbing a method call to throw an exception ... 62
9.10. The Subject and Observer classes that are part of the System under Test (SUT) 63
9.11. Testing that a method gets called once and with a specified argument 65
9.12. Testing that a method gets called with a number of arguments constrained in different
ways .. 65
9.13. Testing that a method gets called two times with specific arguments. 66
9.14. More complex argument verification ... 66
9.15. Testing that a method gets called once and with the identical object as was passed 67
9.16. Create a mock object with cloning parameters enabled ... 67
9.17. Testing that a method gets called once and with a specified argument 69
9.18. Testing the concrete methods of a trait .. 69
9.19. Testing the concrete methods of an abstract class .. 70
9.20. Stubbing a web service ... 71
9.21. A class that interacts with the filesystem .. 72
9.22. Testing a class that interacts with the filesystem .. 73
9.23. Mocking the filesystem in a test for a class that interacts with the filesystem 73
11.1. Using the @codeCoverageIgnore, @codeCoverageIgnoreStart and
@codeCoverageIgnoreEnd annotations .. 78
11.2. Tests that specify which method they want to cover ... 79

PHPUnit Manual

ix

11.3. A test that specifies that no method should be covered ... 80
11.4. .. 81
14.1. The assertTrue() and isTrue() methods of the PHPUnit_Framework_Assert class 87
14.2. The PHPUnit_Framework_Constraint_IsTrue class .. 88
14.3. A simple test listener .. 88
14.4. Using base test listener ... 89
14.5. The RepeatedTest Decorator .. 90
14.6. A data-driven test .. 91
A.1. Usage of assertArrayHasKey() .. 93
A.2. Usage of assertClassHasAttribute() .. 93
A.3. Usage of assertArraySubset() .. 94
A.4. Usage of assertClassHasStaticAttribute() ... 95
A.5. Usage of assertContains() ... 96
A.6. Usage of assertContains() ... 96
A.7. Usage of assertContains() with $ignoreCase .. 97
A.8. Usage of assertContainsOnly() .. 98
A.9. Usage of assertContainsOnlyInstancesOf() .. 98
A.10. Usage of assertCount() ... 99
A.11. Usage of assertEmpty() .. 100
A.12. Usage of assertEqualXMLStructure() .. 100
A.13. Usage of assertEquals() .. 102
A.14. Usage of assertEquals() with floats ... 103
A.15. Usage of assertEquals() with DOMDocument objects ... 104
A.16. Usage of assertEquals() with objects ... 105
A.17. Usage of assertEquals() with arrays .. 106
A.18. Usage of assertFalse() .. 106
A.19. Usage of assertFileEquals() ... 107
A.20. Usage of assertFileExists() .. 108
A.21. Usage of assertGreaterThan() .. 108
A.22. Usage of assertGreaterThanOrEqual() ... 109
A.23. Usage of assertInfinite() ... 110
A.24. Usage of assertInstanceOf() ... 111
A.25. Usage of assertInternalType() .. 111
A.26. Usage of assertJsonFileEqualsJsonFile() .. 112
A.27. Usage of assertJsonStringEqualsJsonFile() ... 113
A.28. Usage of assertJsonStringEqualsJsonString() .. 113
A.29. Usage of assertLessThan() .. 114
A.30. Usage of assertLessThanOrEqual() ... 115
A.31. Usage of assertNan() .. 115
A.32. Usage of assertNull() ... 116
A.33. Usage of assertObjectHasAttribute() ... 117
A.34. Usage of assertRegExp() ... 117
A.35. Usage of assertStringMatchesFormat() .. 118
A.36. Usage of assertStringMatchesFormatFile() ... 119
A.37. Usage of assertSame() .. 120
A.38. Usage of assertSame() with objects .. 120
A.39. Usage of assertStringEndsWith() .. 121
A.40. Usage of assertStringEqualsFile() ... 122
A.41. Usage of assertStringStartsWith() ... 122
A.42. Usage of assertThat() ... 123
A.43. Usage of assertTrue() ... 125
A.44. Usage of assertXmlFileEqualsXmlFile() .. 126
A.45. Usage of assertXmlStringEqualsXmlFile() ... 127
A.46. Usage of assertXmlStringEqualsXmlString() .. 128
B.1. Using @coversDefaultClass to shorten annotations .. 133

1

Chapter 1. Installing PHPUnit
Requirements

PHPUnit 5.4 requires PHP 5.6; using the latest version of PHP is highly recommended.

PHPUnit requires the dom [http://php.net/manual/en/dom.setup.php] and json [http://php.net/manu-
al/en/json.installation.php] extensions, which are normally enabled by default.

PHPUnit also requires the pcre [http://php.net/manual/en/pcre.installation.php], reflection [http://
php.net/manual/en/reflection.installation.php], and spl [http://php.net/manual/en/spl.installation.php]
extensions. These standard extensions are enabled by default and cannot be disabled without patching
PHP's build system and/or C sources.

The code coverage report feature requires the Xdebug [http://xdebug.org/] (2.2.1 or later) and tokenizer
[http://php.net/manual/en/tokenizer.installation.php] extensions. Generating XML reports requires the
xmlwriter [http://php.net/manual/en/xmlwriter.installation.php] extension.

PHP Archive (PHAR)
The easiest way to obtain PHPUnit is to download a PHP Archive (PHAR) [http://php.net/phar] that
has all required (as well as some optional) dependencies of PHPUnit bundled in a single file.

The phar [http://php.net/manual/en/phar.installation.php] extension is required for using PHP
Archives (PHAR).

The openssl [http://php.net/manual/en/openssl.installation.php] extension is required for using the --
self-update feature of the PHAR.

If the Suhosin [http://suhosin.org/] extension is enabled, you need to allow execution of PHARs in
your php.ini:

suhosin.executor.include.whitelist = phar

To globally install the PHAR:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod +x phpunit.phar
$ sudo mv phpunit.phar /usr/local/bin/phpunit
$ phpunit --version
PHPUnit x.y.z by Sebastian Bergmann and contributors.

You may also use the downloaded PHAR file directly:

$ wget https://phar.phpunit.de/phpunit.phar
$ php phpunit.phar --version
PHPUnit x.y.z by Sebastian Bergmann and contributors.

Windows
Globally installing the PHAR involves the same procedure as manually installing Composer on Win-
dows [https://getcomposer.org/doc/00-intro.md#installation-windows]:

1. Create a directory for PHP binaries; e.g., C:\bin

2. Append ;C:\bin to your PATH environment variable (related help [http://stackoverflow.com/
questions/6318156/adding-python-path-on-windows-7])

http://php.net/manual/en/dom.setup.php
http://php.net/manual/en/dom.setup.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/pcre.installation.php
http://php.net/manual/en/pcre.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/spl.installation.php
http://php.net/manual/en/spl.installation.php
http://xdebug.org/
http://xdebug.org/
http://php.net/manual/en/tokenizer.installation.php
http://php.net/manual/en/tokenizer.installation.php
http://php.net/manual/en/xmlwriter.installation.php
http://php.net/manual/en/xmlwriter.installation.php
http://php.net/phar
http://php.net/phar
http://php.net/manual/en/phar.installation.php
http://php.net/manual/en/phar.installation.php
http://php.net/manual/en/openssl.installation.php
http://php.net/manual/en/openssl.installation.php
http://suhosin.org/
http://suhosin.org/
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-windows
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7

Installing PHPUnit

2

3. Download https://phar.phpunit.de/phpunit.phar and save the file as C:\bin\phpunit.phar

4. Open a command line (e.g., press Windows+R » type cmd » ENTER)

5. Create a wrapping batch script (results in C:\bin\phpunit.cmd):

C:\Users\username> cd C:\bin
C:\bin> echo @php "%~dp0phpunit.phar" %* > phpunit.cmd
C:\bin> exit

6. Open a new command line and confirm that you can execute PHPUnit from any path:

C:\Users\username> phpunit --version
PHPUnit x.y.z by Sebastian Bergmann and contributors.

For Cygwin and/or MingW32 (e.g., TortoiseGit) shell environments, you may skip step 5. above,
simply save the file as phpunit (without .phar extension), and make it executable via chmod
775 phpunit.

Verifying PHPUnit PHAR Releases
All official releases of code distributed by the PHPUnit Project are signed by the release manager for
the release. PGP signatures and SHA1 hashes are available for verification on phar.phpunit.de [https://
phar.phpunit.de/].

The following example details how release verification works. We start by downloading
phpunit.phar as well as its detached PGP signature phpunit.phar.asc:

wget https://phar.phpunit.de/phpunit.phar
wget https://phar.phpunit.de/phpunit.phar.asc

We want to verify PHPUnit's PHP Archive (phpunit.phar) against its detached signature
(phpunit.phar.asc):

gpg phpunit.phar.asc
gpg: Signature made Sat 19 Jul 2014 01:28:02 PM CEST using RSA key ID 6372C20A
gpg: Can't check signature: public key not found

We don't have the release manager's public key (6372C20A) in our local system. In order to proceed
with the verification we need to retrieve the release manager's public key from a key server. One such
server is pgp.uni-mainz.de. The public key servers are linked together, so you should be able
to connect to any key server.

gpg --keyserver pgp.uni-mainz.de --recv-keys 0x4AA394086372C20A
gpg: requesting key 6372C20A from hkp server pgp.uni-mainz.de
gpg: key 6372C20A: public key "Sebastian Bergmann <sb@sebastian-bergmann.de>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Now we have received a public key for an entity known as "Sebastian Bergmann <sb@sebastian-
bergmann.de>". However, we have no way of verifying this key was created by the person known as
Sebastian Bergmann. But, let's try to verify the release signature again.

gpg phpunit.phar.asc
gpg: Signature made Sat 19 Jul 2014 01:28:02 PM CEST using RSA key ID 6372C20A
gpg: Good signature from "Sebastian Bergmann <sb@sebastian-bergmann.de>"
gpg: aka "Sebastian Bergmann <sebastian@php.net>"
gpg: aka "Sebastian Bergmann <sebastian@thephp.cc>"
gpg: aka "Sebastian Bergmann <sebastian@phpunit.de>"
gpg: aka "Sebastian Bergmann <sebastian.bergmann@thephp.cc>"

https://phar.phpunit.de/phpunit.phar
https://phar.phpunit.de/
https://phar.phpunit.de/
https://phar.phpunit.de/

Installing PHPUnit

3

gpg: aka "[jpeg image of size 40635]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: D840 6D0D 8294 7747 2937 7831 4AA3 9408 6372 C20A

At this point, the signature is good, but we don't trust this key. A good signature means that the file has
not been tampered. However, due to the nature of public key cryptography, you need to additionally
verify that key 6372C20A was created by the real Sebastian Bergmann.

Any attacker can create a public key and upload it to the public key servers. They can then create
a malicious release signed by this fake key. Then, if you tried to verify the signature of this corrupt
release, it would succeed because the key was not the "real" key. Therefore, you need to validate the
authenticity of this key. Validating the authenticity of a public key, however, is outside the scope of
this documentation.

It may be prudent to create a shell script to manage PHPUnit installation that verifies the GnuPG
signature before running your test suite. For example:

#!/usr/bin/env bash
clean=1 # Delete phpunit.phar after the tests are complete?
aftercmd="php phpunit.phar --bootstrap bootstrap.php src/tests"
gpg --fingerprint D8406D0D82947747293778314AA394086372C20A
if [$? -ne 0]; then
 echo -e "\033[33mDownloading PGP Public Key...\033[0m"
 gpg --recv-keys D8406D0D82947747293778314AA394086372C20A
 # Sebastian Bergmann <sb@sebastian-bergmann.de>
 gpg --fingerprint D8406D0D82947747293778314AA394086372C20A
 if [$? -ne 0]; then
 echo -e "\033[31mCould not download PGP public key for verification\033[0m"
 exit
 fi
fi

if ["$clean" -eq 1]; then
 # Let's clean them up, if they exist
 if [-f phpunit.phar]; then
 rm -f phpunit.phar
 fi
 if [-f phpunit.phar.asc]; then
 rm -f phpunit.phar.asc
 fi
fi

Let's grab the latest release and its signature
if [! -f phpunit.phar]; then
 wget https://phar.phpunit.de/phpunit.phar
fi
if [! -f phpunit.phar.asc]; then
 wget https://phar.phpunit.de/phpunit.phar.asc
fi

Verify before running
gpg --verify phpunit.phar.asc phpunit.phar
if [$? -eq 0]; then
 echo
 echo -e "\033[33mBegin Unit Testing\033[0m"
 # Run the testing suite
 `$after_cmd`
 # Cleanup
 if ["$clean" -eq 1]; then
 echo -e "\033[32mCleaning Up!\033[0m"
 rm -f phpunit.phar
 rm -f phpunit.phar.asc

Installing PHPUnit

4

 fi
else
 echo
 chmod -x phpunit.phar
 mv phpunit.phar /tmp/bad-phpunit.phar
 mv phpunit.phar.asc /tmp/bad-phpunit.phar.asc
 echo -e "\033[31mSignature did not match! PHPUnit has been moved to /tmp/bad-phpunit.phar\033[0m"
 exit 1
fi

Composer
Simply add a dependency on phpunit/phpunit to your project's composer.json file if you use
Composer [https://getcomposer.org/] to manage the dependencies of your project. Here is a minimal
example of a composer.json file that just defines a development-time dependency on PHPUnit
5.4:

{
 "require-dev": {
 "phpunit/phpunit": "5.4.*"
 }
}

For a system-wide installation via Composer, you can run:

composer global require "phpunit/phpunit=5.4.*"

Make sure you have ~/.composer/vendor/bin/ in your path.

Optional packages
The following optional packages are available:

PHP_Invoker A utility class for invoking callables with a timeout. This pack-
age is required to enforce test timeouts in strict mode.

This package is included in the PHAR distribution of PHPUnit.
It can be installed via Composer by adding the following "re-
quire-dev" dependency:

"phpunit/php-invoker": "*"

DbUnit DbUnit port for PHP/PHPUnit to support database interaction
testing.

This package is included in the PHAR distribution of PHPUnit.
It can be installed via Composer by adding the following "re-
quire-dev" dependency:

"phpunit/dbunit": ">=1.2"

https://getcomposer.org/
https://getcomposer.org/

5

Chapter 2. Writing Tests for PHPUnit
 Example 2.1, “Testing array operations with PHPUnit” shows how we can write tests using PHPUnit
that exercise PHP's array operations. The example introduces the basic conventions and steps for
writing tests with PHPUnit:

1. The tests for a class Class go into a class ClassTest.

2. ClassTest inherits (most of the time) from phpunit\framework\TestCase.

3. The tests are public methods that are named test*.

Alternatively, you can use the @test annotation in a method's docblock to mark it as a test method.

4. Inside the test methods, assertion methods such as assertEquals() (see Appendix A, Asser-
tions) are used to assert that an actual value matches an expected value.

Example 2.1. Testing array operations with PHPUnit

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{
 public function testPushAndPop()
 {
 $stack = [];
 $this->assertEquals(0, count($stack));

 array_push($stack, 'foo');
 $this->assertEquals('foo', $stack[count($stack)-1]);
 $this->assertEquals(1, count($stack));

 $this->assertEquals('foo', array_pop($stack));
 $this->assertEquals(0, count($stack));
 }
}
?>

Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead.

—Martin Fowler

Test Dependencies
Unit Tests are primarily written as a good practice to help developers identify and
fix bugs, to refactor code and to serve as documentation for a unit of software under
test. To achieve these benefits, unit tests ideally should cover all the possible paths in
a program. One unit test usually covers one specific path in one function or method.
However a test method is not necessary an encapsulated, independent entity. Often
there are implicit dependencies between test methods, hidden in the implementation
scenario of a test.

—Adrian Kuhn et. al.

 PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of an
instance of the test fixture by a producer and passing it to the dependent consumers.

Writing Tests for PHPUnit

6

• A producer is a test method that yields its unit under test as return value.

• A consumer is a test method that depends on one or more producers and their return values.

 Example 2.2, “Using the @depends annotation to express dependencies” shows how to use the
@depends annotation to express dependencies between test methods.

Example 2.2. Using the @depends annotation to express dependencies

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{
 public function testEmpty()
 {
 $stack = [];
 $this->assertEmpty($stack);

 return $stack;
 }

 /**
 * @depends testEmpty
 */
 public function testPush(array $stack)
 {
 array_push($stack, 'foo');
 $this->assertEquals('foo', $stack[count($stack)-1]);
 $this->assertNotEmpty($stack);

 return $stack;
 }

 /**
 * @depends testPush
 */
 public function testPop(array $stack)
 {
 $this->assertEquals('foo', array_pop($stack));
 $this->assertEmpty($stack);
 }
}
?>

In the example above, the first test, testEmpty(), creates a new array and asserts that it is empty.
The test then returns the fixture as its result. The second test, testPush(), depends on testEmp-
ty() and is passed the result of that depended-upon test as its argument. Finally, testPop() de-
pends upon testPush().

Note

 The return value yielded by a producer is passed "as-is" to its consumers by default. This
means that when a producer returns an object a reference to that object is passed to the con-
sumers. When a copy should be used instead of a reference then @depends clone should
be used instead of @depends.

 To quickly localize defects, we want our attention to be focussed on relevant failing tests. This is why
PHPUnit skips the execution of a test when a depended-upon test has failed. This improves defect
localization by exploiting the dependencies between tests as shown in Example 2.3, “Exploiting the
dependencies between tests”.

Writing Tests for PHPUnit

7

Example 2.3. Exploiting the dependencies between tests

<?php
use PHPUnit\Framework\TestCase;

class DependencyFailureTest extends TestCase
{
 public function testOne()
 {
 $this->assertTrue(false);
 }

 /**
 * @depends testOne
 */
 public function testTwo()
 {
 }
}
?>

phpunit --verbose DependencyFailureTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

FS

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) DependencyFailureTest::testOne
Failed asserting that false is true.

/home/sb/DependencyFailureTest.php:6

There was 1 skipped test:

1) DependencyFailureTest::testTwo
This test depends on "DependencyFailureTest::testOne" to pass.

FAILURES!
Tests: 1, Assertions: 1, Failures: 1, Skipped: 1.

A test may have more than one @depends annotation. PHPUnit does not change the order in which
tests are executed, you have to ensure that the dependencies of a test can actually be met before the
test is run.

A test that has more than one @depends annotation will get a fixture from the first producer as the
first argument, a fixture from the second producer as the second argument, and so on. See Example 2.4,
“Test with multiple dependencies”

Example 2.4. Test with multiple dependencies

<?php
use PHPUnit\Framework\TestCase;

class MultipleDependenciesTest extends TestCase
{
 public function testProducerFirst()
 {
 $this->assertTrue(true);

Writing Tests for PHPUnit

8

 return 'first';
 }

 public function testProducerSecond()
 {
 $this->assertTrue(true);
 return 'second';
 }

 /**
 * @depends testProducerFirst
 * @depends testProducerSecond
 */
 public function testConsumer()
 {
 $this->assertEquals(
 ['first', 'second'],
 func_get_args()
);
 }
}
?>

phpunit --verbose MultipleDependenciesTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

...

Time: 0 seconds, Memory: 3.25Mb

OK (3 tests, 3 assertions)

Data Providers
 A test method can accept arbitrary arguments. These arguments are to be provided by a data provider
method (additionProvider() in Example 2.5, “Using a data provider that returns an array of
arrays”). The data provider method to be used is specified using the @dataProvider annotation.

A data provider method must be public and either return an array of arrays or an object that imple-
ments the Iterator interface and yields an array for each iteration step. For each array that is part
of the collection the test method will be called with the contents of the array as its arguments.

Example 2.5. Using a data provider that returns an array of arrays

<?php
use PHPUnit\Framework\TestCase;

class DataTest extends TestCase
{
 /**
 * @dataProvider additionProvider
 */
 public function testAdd($a, $b, $expected)
 {
 $this->assertEquals($expected, $a + $b);
 }

 public function additionProvider()
 {
 return [
 [0, 0, 0],

Writing Tests for PHPUnit

9

 [0, 1, 1],
 [1, 0, 1],
 [1, 1, 3]
];
 }
}
?>

phpunit DataTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Failed asserting that 2 matches expected 3.

/home/sb/DataTest.php:9

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

When using a large number of datasets it's useful to name each one with string key instead of default
numeric. Output will be more verbose as it'll contain that name of a dataset that breaks a test.

Example 2.6. Using a data provider with named datasets

<?php
use PHPUnit\Framework\TestCase;

class DataTest extends TestCase
{
 /**
 * @dataProvider additionProvider
 */
 public function testAdd($a, $b, $expected)
 {
 $this->assertEquals($expected, $a + $b);
 }

 public function additionProvider()
 {
 return [
 'adding zeros' => [0, 0, 0],
 'zero plus one' => [0, 1, 1],
 'one plus zero' => [1, 0, 1],
 'one plus one' => [1, 1, 3]
];
 }
}
?>

phpunit DataTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

Writing Tests for PHPUnit

10

1) DataTest::testAdd with data set "one plus one" (1, 1, 3)
Failed asserting that 2 matches expected 3.

/home/sb/DataTest.php:9

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.7. Using a data provider that returns an Iterator object

<?php
use PHPUnit\Framework\TestCase;

require 'CsvFileIterator.php';

class DataTest extends TestCase
{
 /**
 * @dataProvider additionProvider
 */
 public function testAdd($a, $b, $expected)
 {
 $this->assertEquals($expected, $a + $b);
 }

 public function additionProvider()
 {
 return new CsvFileIterator('data.csv');
 }
}
?>

phpunit DataTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set #3 ('1', '1', '3')
Failed asserting that 2 matches expected '3'.

/home/sb/DataTest.php:11

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.8. The CsvFileIterator class

<?php
use PHPUnit\Framework\TestCase;

class CsvFileIterator implements Iterator {
 protected $file;
 protected $key = 0;
 protected $current;

 public function __construct($file) {
 $this->file = fopen($file, 'r');

Writing Tests for PHPUnit

11

 }

 public function __destruct() {
 fclose($this->file);
 }

 public function rewind() {
 rewind($this->file);
 $this->current = fgetcsv($this->file);
 $this->key = 0;
 }

 public function valid() {
 return !feof($this->file);
 }

 public function key() {
 return $this->key;
 }

 public function current() {
 return $this->current;
 }

 public function next() {
 $this->current = fgetcsv($this->file);
 $this->key++;
 }
}
?>

 When a test receives input from both a @dataProvider method and from one or more tests it
@depends on, the arguments from the data provider will come before the ones from depended-upon
tests. The arguments from depended-upon tests will be the same for each data set. See Example 2.9,
“Combination of @depends and @dataProvider in same test”

Example 2.9. Combination of @depends and @dataProvider in same test

<?php
use PHPUnit\Framework\TestCase;

class DependencyAndDataProviderComboTest extends TestCase
{
 public function provider()
 {
 return [['provider1'], ['provider2']];
 }

 public function testProducerFirst()
 {
 $this->assertTrue(true);
 return 'first';
 }

 public function testProducerSecond()
 {
 $this->assertTrue(true);
 return 'second';
 }

 /**
 * @depends testProducerFirst
 * @depends testProducerSecond

Writing Tests for PHPUnit

12

 * @dataProvider provider
 */
 public function testConsumer()
 {
 $this->assertEquals(
 ['provider1', 'first', 'second'],
 func_get_args()
);
 }
}
?>

phpunit --verbose DependencyAndDataProviderComboTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 3.50Mb

There was 1 failure:

1) DependencyAndDataProviderComboTest::testConsumer with data set #1 ('provider2')
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
Array (
- 0 => 'provider1'
+ 0 => 'provider2'
1 => 'first'
2 => 'second'
)

/home/sb/DependencyAndDataProviderComboTest.php:31

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Note

 When a test depends on a test that uses data providers, the depending test will be executed
when the test it depends upon is successful for at least one data set. The result of a test that
uses data providers cannot be injected into a depending test.

Note

 All data providers are executed before both the call to the setUpBeforeClass static
method and the first call to the setUp method. Because of that you can't access any variables
you create there from within a data provider. This is required in order for PHPUnit to be able
to compute the total number of tests.

Testing Exceptions
 Example 2.10, “Using the expectException() method” shows how to use the expectException()
method to test whether an exception is thrown by the code under test.

Example 2.10. Using the expectException() method

<?php
use PHPUnit\Framework\TestCase;

Writing Tests for PHPUnit

13

class ExceptionTest extends TestCase
{
 public function testException()
 {
 $this->expectException(InvalidArgumentException::class);
 }
}
?>

phpunit ExceptionTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ExceptionTest::testException
Expected exception InvalidArgumentException

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

 In addition to the expectException() method the expectExceptionCode(), ex-
pectExceptionMessage(), and expectExceptionMessageRegExp() methods exist to
set up expectations for exceptions raised by the code under test.

 Alternatively, you can use the @expectedException, @expectedExceptionCode, @ex-
pectedExceptionMessage, and @expectedExceptionMessageRegExp annotations to
set up expectations for exceptions raised by the code under test. Example 2.11, “Using the @expect-
edException annotation” shows an example.

Example 2.11. Using the @expectedException annotation

<?php
use PHPUnit\Framework\TestCase;

class ExceptionTest extends TestCase
{
 /**
 * @expectedException InvalidArgumentException
 */
 public function testException()
 {
 }
}
?>

phpunit ExceptionTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ExceptionTest::testException
Expected exception InvalidArgumentException

Writing Tests for PHPUnit

14

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Testing PHP Errors
 By default, PHPUnit converts PHP errors, warnings, and notices that are triggered during the
execution of a test to an exception. Using these exceptions, you can, for instance, expect a test to
trigger a PHP error as shown in Example 2.12, “Expecting a PHP error using @expectedException”.

Note

PHP's error_reporting runtime configuration can limit which errors PHPUnit will con-
vert to exceptions. If you are having issues with this feature, be sure PHP is not configured
to suppress the type of errors you're testing.

Example 2.12. Expecting a PHP error using @expectedException

<?php
use PHPUnit\Framework\TestCase;

class ExpectedErrorTest extends TestCase
{
 /**
 * @expectedException PHPUnit_Framework_Error
 */
 public function testFailingInclude()
 {
 include 'not_existing_file.php';
 }
}
?>

phpunit -d error_reporting=2 ExpectedErrorTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

.

Time: 0 seconds, Memory: 5.25Mb

OK (1 test, 1 assertion)

 PHPUnit_Framework_Error_Notice and PHPUnit_Framework_Error_Warning
represent PHP notices and warnings, respectively.

Note

You should be as specific as possible when testing exceptions. Testing for classes that are too
generic might lead to undesirable side-effects. Accordingly, testing for the Exception class
with @expectedException or setExpectedException() is no longer permitted.

When testing that relies on php functions that trigger errors like fopen it can sometimes be useful to
use error suppression while testing. This allows you to check the return values by suppressing notices
that would lead to a phpunit PHPUnit_Framework_Error_Notice.

Example 2.13. Testing return values of code that uses PHP Errors

<?php
use PHPUnit\Framework\TestCase;

Writing Tests for PHPUnit

15

class ErrorSuppressionTest extends TestCase
{
 public function testFileWriting() {
 $writer = new FileWriter;
 $this->assertFalse(@$writer->write('/is-not-writeable/file', 'stuff'));
 }
}
class FileWriter
{
 public function write($file, $content) {
 $file = fopen($file, 'w');
 if($file == false) {
 return false;
 }
 // ...
 }
}

?>

phpunit ErrorSuppressionTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

.

Time: 1 seconds, Memory: 5.25Mb

OK (1 test, 1 assertion)

Without the error suppression the test would fail reporting fopen(/is-not-write-
able/file): failed to open stream: No such file or directory.

Testing Output
Sometimes you want to assert that the execution of a method, for instance, generates an expected out-
put (via echo or print, for example). The phpunit\framework\TestCase class uses PHP's
Output Buffering [http://www.php.net/manual/en/ref.outcontrol.php] feature to provide the function-
ality that is necessary for this.

Example 2.14, “Testing the output of a function or method” shows how to use the expectOut-
putString() method to set the expected output. If this expected output is not generated, the test
will be counted as a failure.

Example 2.14. Testing the output of a function or method

<?php
use PHPUnit\Framework\TestCase;

class OutputTest extends TestCase
{
 public function testExpectFooActualFoo()
 {
 $this->expectOutputString('foo');
 print 'foo';
 }

 public function testExpectBarActualBaz()
 {
 $this->expectOutputString('bar');
 print 'baz';
 }

http://www.php.net/manual/en/ref.outcontrol.php
http://www.php.net/manual/en/ref.outcontrol.php

Writing Tests for PHPUnit

16

}
?>

phpunit OutputTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

.F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) OutputTest::testExpectBarActualBaz
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

Table 2.1, “Methods for testing output” shows the methods provided for testing output

Table 2.1. Methods for testing output

Method Meaning

void expectOutputRegex(string
$regularExpression)

Set up the expectation that the output matches a
$regularExpression.

void expectOutputString(string
$expectedString)

Set up the expectation that the output is equal to
an $expectedString.

bool setOutputCallback(callable
$callback)

Sets up a callback that is used to, for instance,
normalize the actual output.

Note

A test that emits output will fail in strict mode.

Error output
Whenever a test fails PHPUnit tries its best to provide you with as much context as possible that can
help to identify the problem.

Example 2.15. Error output generated when an array comparison fails

<?php
use PHPUnit\Framework\TestCase;

class ArrayDiffTest extends TestCase
{
 public function testEquality() {
 $this->assertEquals(
 [1, 2, 3, 4, 5, 6],
 [1, 2, 33, 4, 5, 6]
);
 }
}

Writing Tests for PHPUnit

17

?>

phpunit ArrayDiffTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) ArrayDiffTest::testEquality
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
 Array (
 0 => 1
 1 => 2
- 2 => 3
+ 2 => 33
 3 => 4
 4 => 5
 5 => 6
)

/home/sb/ArrayDiffTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example only one of the array values differs and the other values are shown to provide context
on where the error occurred.

When the generated output would be long to read PHPUnit will split it up and provide a few lines of
context around every difference.

Example 2.16. Error output when an array comparison of an long array fails

<?php
use PHPUnit\Framework\TestCase;

class LongArrayDiffTest extends TestCase
{
 public function testEquality() {
 $this->assertEquals(
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 33, 4, 5, 6]
);
 }
}
?>

phpunit LongArrayDiffTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

Writing Tests for PHPUnit

18

1) LongArrayDiffTest::testEquality
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
 13 => 2
- 14 => 3
+ 14 => 33
 15 => 4
 16 => 5
 17 => 6
)

/home/sb/LongArrayDiffTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Edge cases
When a comparison fails PHPUnit creates textual representations of the input values and compares
those. Due to that implementation a diff might show more problems than actually exist.

This only happens when using assertEquals or other 'weak' comparison functions on arrays or objects.

Example 2.17. Edge case in the diff generation when using weak comparison

<?php
use PHPUnit\Framework\TestCase;

class ArrayWeakComparisonTest extends TestCase
{
 public function testEquality() {
 $this->assertEquals(
 [1, 2, 3, 4, 5, 6],
 ['1', 2, 33, 4, 5, 6]
);
 }
}
?>

phpunit ArrayWeakComparisonTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) ArrayWeakComparisonTest::testEquality
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
 Array (
- 0 => 1
+ 0 => '1'
 1 => 2
- 2 => 3
+ 2 => 33

Writing Tests for PHPUnit

19

 3 => 4
 4 => 5
 5 => 6
)

/home/sb/ArrayWeakComparisonTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example the difference in the first index between 1 and '1' is reported even though assertE-
quals considers the values as a match.

20

Chapter 3. The Command-Line Test
Runner

The PHPUnit command-line test runner can be invoked through the phpunit command. The fol-
lowing code shows how to run tests with the PHPUnit command-line test runner:

phpunit ArrayTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

..

Time: 0 seconds

OK (2 tests, 2 assertions)

When invoked as shown above, the PHPUnit command-line test runner will look for a
ArrayTest.php sourcefile in the current working directory, load it, and expect to find a Ar-
rayTest test case class. It will then execute the tests of that class.

For each test run, the PHPUnit command-line tool prints one character to indicate progress:

. Printed when the test succeeds.

F Printed when an assertion fails while running the test method.

E Printed when an error occurs while running the test method.

R Printed when the test has been marked as risky (see Chapter 6, Risky Tests).

S Printed when the test has been skipped (see Chapter 7, Incomplete and Skipped Tests).

I Printed when the test is marked as being incomplete or not yet implemented (see Chapter 7, In-
complete and Skipped Tests).

 PHPUnit distinguishes between failures and errors. A failure is a violated PHPUnit assertion such
as a failing assertEquals() call. An error is an unexpected exception or a PHP error. Sometimes
this distinction proves useful since errors tend to be easier to fix than failures. If you have a big list of
problems, it is best to tackle the errors first and see if you have any failures left when they are all fixed.

Command-Line Options
Let's take a look at the command-line test runner's options in the following code:

phpunit --help
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

Usage: phpunit [options] UnitTest [UnitTest.php]
 phpunit [options] <directory>

Code Coverage Options:

 --coverage-clover <file> Generate code coverage report in Clover XML format.
 --coverage-crap4j <file> Generate code coverage report in Crap4J XML format.
 --coverage-html <dir> Generate code coverage report in HTML format.
 --coverage-php <file> Export PHP_CodeCoverage object to file.
 --coverage-text=<file> Generate code coverage report in text format.
 Default: Standard output.
 --coverage-xml <dir> Generate code coverage report in PHPUnit XML format.

The Command-Line Test Runner

21

Logging Options:

 --log-junit <file> Log test execution in JUnit XML format to file.
 --log-tap <file> Log test execution in TAP format to file.
 --log-json <file> Log test execution in JSON format.
 --testdox-html <file> Write agile documentation in HTML format to file.
 --testdox-text <file> Write agile documentation in Text format to file.

Test Selection Options:

 --filter <pattern> Filter which tests to run.
 --testsuite <pattern> Filter which testsuite to run.
 --group ... Only runs tests from the specified group(s).
 --exclude-group ... Exclude tests from the specified group(s).
 --list-groups List available test groups.
 --test-suffix ... Only search for test in files with specified
 suffix(es). Default: Test.php,.phpt

Test Execution Options:

 --report-useless-tests Be strict about tests that do not test anything.
 --strict-coverage Be strict about unintentionally covered code.
 --strict-global-state Be strict about changes to global state
 --disallow-test-output Be strict about output during tests.
 --enforce-time-limit Enforce time limit based on test size.
 --disallow-todo-tests Disallow @todo-annotated tests.

 --process-isolation Run each test in a separate PHP process.
 --no-globals-backup Do not backup and restore $GLOBALS for each test.
 --static-backup Backup and restore static attributes for each test.

 --colors=<flag> Use colors in output ("never", "auto" or "always").
 --columns <n> Number of columns to use for progress output.
 --columns max Use maximum number of columns for progress output.
 --stderr Write to STDERR instead of STDOUT.
 --stop-on-error Stop execution upon first error.
 --stop-on-failure Stop execution upon first error or failure.
 --stop-on-risky Stop execution upon first risky test.
 --stop-on-skipped Stop execution upon first skipped test.
 --stop-on-incomplete Stop execution upon first incomplete test.
 -v|--verbose Output more verbose information.
 --debug Display debugging information during test execution.

 --loader <loader> TestSuiteLoader implementation to use.
 --repeat <times> Runs the test(s) repeatedly.
 --tap Report test execution progress in TAP format.
 --testdox Report test execution progress in TestDox format.
 --printer <printer> TestListener implementation to use.

Configuration Options:

 --bootstrap <file> A "bootstrap" PHP file that is run before the tests.
 -c|--configuration <file> Read configuration from XML file.
 --no-configuration Ignore default configuration file (phpunit.xml).
 --include-path <path(s)> Prepend PHP's include_path with given path(s).
 -d key[=value] Sets a php.ini value.

Miscellaneous Options:

 -h|--help Prints this usage information.
 --version Prints the version and exits.

The Command-Line Test Runner

22

phpunit UnitTest Runs the tests that are provided by the class UnitTest. This
class is expected to be declared in the UnitTest.php source-
file.

UnitTest must be either a class that inherits from ph-
punit\framework\TestCase or a class that provides
a public static suite() method which returns a
PHPUnit_Framework_Test object, for example an in-
stance of the PHPUnit_Framework_TestSuite class.

phpunit UnitTest
UnitTest.php

Runs the tests that are provided by the class UnitTest. This
class is expected to be declared in the specified sourcefile.

--coverage-clover Generates a logfile in XML format with the code coverage in-
formation for the tests run. See Chapter 13, Logging for more
details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

--coverage-crap4j Generates a code coverage report in Crap4j format. See Chap-
ter 11, Code Coverage Analysis for more details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

--coverage-html Generates a code coverage report in HTML format. See Chap-
ter 11, Code Coverage Analysis for more details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

--coverage-php Generates a serialized PHP_CodeCoverage object with the
code coverage information.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

--coverage-text Generates a logfile or command-line output in human readable
format with the code coverage information for the tests run. See
Chapter 13, Logging for more details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

--log-junit Generates a logfile in JUnit XML format for the tests run. See
Chapter 13, Logging for more details.

--log-tap Generates a logfile using the Test Anything Protocol (TAP)
[http://testanything.org/] format for the tests run. See Chap-
ter 13, Logging for more details.

--log-json Generates a logfile using the JSON [http://www.json.org/] for-
mat. See Chapter 13, Logging for more details.

--testdox-html and --
testdox-text

Generates agile documentation in HTML or plain text format
for the tests that are run. See Chapter 12, Other Uses for Tests
for more details.

--filter Only runs tests whose name matches the given regular expres-
sion pattern. If the pattern is not enclosed in delimiters, PH-
PUnit will enclose the pattern in / delimiters.

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

The Command-Line Test Runner

23

The test names to match will be in one of the following formats:

TestName-
space\TestCaseClass::testMethod

The default test name
format is the equiv-
alent of using the
__METHOD__ magic
constant inside the test
method.

TestName-
space\TestCaseClass::testMethod
with data set #0

When a test has a da-
ta provider, each itera-
tion of the data gets the
current index appended
to the end of the default
test name.

TestName-
space\TestCaseClass::testMethod
with data set "my named
data"

When a test has a da-
ta provider that uses
named sets, each itera-
tion of the data gets the
current name appended
to the end of the de-
fault test name. See Ex-
ample 3.1, “Named data
sets” for an example of
named data sets.

Example 3.1. Named
data sets

<?php
use PHPUnit\Framework\TestCase;

namespace TestNamespace;

class TestCaseClass extends TestCase
{
 /**
 * @dataProvider provider
 */
 public function testMethod($data)
 {
 $this->assertTrue($data);
 }

 public function provider()
 {
 return [
 'my named data' => [true],
 'my data' => [true]
];
 }
}
?>

/path/to/my/test.phpt The test name for a PH-
PT test is the filesystem
path.

The Command-Line Test Runner

24

See Example 3.2, “Filter pattern examples” for examples of
valid filter patterns.

Example 3.2. Filter pattern examples

• --filter 'TestNamespace\
\TestCaseClass::testMethod'

• --filter 'TestNamespace\\TestCaseClass'

• --filter TestNamespace

• --filter TestCaseClass

• --filter testMethod

• --filter '/::testMethod .*"my named da-
ta"/'

• --filter '/::testMethod .*#5$/'

• --filter '/::testMethod .*#(5|6|7)$/'

See Example 3.3, “Filter shortcuts” for some additional short-
cuts that are available for matching data providers.

Example 3.3. Filter shortcuts

• --filter 'testMethod#2'

• --filter 'testMethod#2-4'

• --filter '#2'

• --filter '#2-4'

• --filter 'testMethod@my named data'

• --filter 'testMethod@my.*data'

• --filter '@my named data'

• --filter '@my.*data'

--testsuite Only runs the test suite whose name matches the given pattern.

--group Only runs tests from the specified group(s). A test can be tagged
as belonging to a group using the @group annotation.

The @author annotation is an alias for @group allowing to
filter tests based on their authors.

--exclude-group Exclude tests from the specified group(s). A test can be tagged
as belonging to a group using the @group annotation.

--list-groups List available test groups.

--test-suffix Only search for test files with specified suffix(es).

--report-useless-tests Be strict about tests that do not test anything. See Chapter 6,
Risky Tests for details.

The Command-Line Test Runner

25

--strict-coverage Be strict about unintentionally covered code. See Chapter 6,
Risky Tests for details.

--strict-global-state Be strict about global state manipulation. See Chapter 6, Risky
Tests for details.

--disallow-test-output Be strict about output during tests. See Chapter 6, Risky Tests
for details.

--disallow-todo-tests Does not execute tests which have the @todo annotation in its
docblock.

--enforce-time-limit Enforce time limit based on test size. See Chapter 6, Risky Tests
for details.

--process-isolation Run each test in a separate PHP process.

--no-globals-backup Do not backup and restore $GLOBALS. See the section called
“Global State” for more details.

--static-backup Backup and restore static attributes of user-defined classes. See
the section called “Global State” for more details.

--colors Use colors in output. On Windows, use ANSICON [https://
github.com/adoxa/ansicon] or ConEmu [https://github.com/
Maximus5/ConEmu].

There are three possible values for this option:

• never: never displays colors in the output. This is the de-
fault value when --colors option is not used.

• auto: displays colors in the output unless the current ter-
minal doesn't supports colors, or if the output is piped to a
command or redirected to a file.

• always: always displays colors in the output even when the
current terminal doesn't supports colors, or when the output
is piped to a command or redirected to a file.

When --colors is used without any value, auto is the cho-
sen value.

--columns Defines the number of columns to use for progress output. If
max is defined as value, the number of columns will be maxi-
mum of the current terminal.

--stderr Optionally print to STDERR instead of STDOUT.

--stop-on-error Stop execution upon first error.

--stop-on-failure Stop execution upon first error or failure.

--stop-on-risky Stop execution upon first risky test.

--stop-on-skipped Stop execution upon first skipped test.

--stop-on-incomplete Stop execution upon first incomplete test.

--verbose Output more verbose information, for instance the names of
tests that were incomplete or have been skipped.

--debug Output debug information such as the name of a test when its
execution starts.

https://github.com/adoxa/ansicon
https://github.com/adoxa/ansicon
https://github.com/adoxa/ansicon
https://github.com/Maximus5/ConEmu
https://github.com/Maximus5/ConEmu
https://github.com/Maximus5/ConEmu

The Command-Line Test Runner

26

--loader Specifies the PHPUnit_Runner_TestSuiteLoader im-
plementation to use.

The standard test suite loader will look for the sourcefile in the
current working directory and in each directory that is speci-
fied in PHP's include_path configuration directive. A class
name such as Project_Package_Class is mapped to the
source filename Project/Package/Class.php.

--repeat Repeatedly runs the test(s) the specified number of times.

--tap Reports the test progress using the Test Anything Protocol
(TAP) [http://testanything.org/]. See Chapter 13, Logging for
more details.

--testdox Reports the test progress as agile documentation. See Chap-
ter 12, Other Uses for Tests for more details.

--printer Specifies the result printer to use. The printer class
must extend PHPUnit_Util_Printer and implement the
PHPUnit_Framework_TestListener interface.

--bootstrap A "bootstrap" PHP file that is run before the tests.

--configuration, -c Read configuration from XML file. See Appendix C, The XML
Configuration File for more details.

If phpunit.xml or phpunit.xml.dist (in that order)
exist in the current working directory and --configura-
tion is not used, the configuration will be automatically read
from that file.

--no-configuration Ignore phpunit.xml and phpunit.xml.dist from the
current working directory.

--include-path Prepend PHP's include_path with given path(s).

-d Sets the value of the given PHP configuration option.

Note

Please note that as of 4.8, options can be put after the argument(s).

http://testanything.org/
http://testanything.org/
http://testanything.org/

27

Chapter 4. Fixtures
 One of the most time-consuming parts of writing tests is writing the code to set the world up in a
known state and then return it to its original state when the test is complete. This known state is called
the fixture of the test.

In Example 2.1, “Testing array operations with PHPUnit”, the fixture was simply the array that is
stored in the $stack variable. Most of the time, though, the fixture will be more complex than a
simple array, and the amount of code needed to set it up will grow accordingly. The actual content of
the test gets lost in the noise of setting up the fixture. This problem gets even worse when you write
several tests with similar fixtures. Without some help from the testing framework, we would have to
duplicate the code that sets up the fixture for each test we write.

 PHPUnit supports sharing the setup code. Before a test method is run, a template method called
setUp() is invoked. setUp() is where you create the objects against which you will test. Once
the test method has finished running, whether it succeeded or failed, another template method called
tearDown() is invoked. tearDown() is where you clean up the objects against which you tested.

In Example 2.2, “Using the @depends annotation to express dependencies” we used the produc-
er-consumer relationship between tests to share a fixture. This is not always desired or even possible.
Example 4.1, “Using setUp() to create the stack fixture” shows how we can write the tests of the
StackTest in such a way that not the fixture itself is reused but the code that creates it. First we de-
clare the instance variable, $stack, that we are going to use instead of a method-local variable. Then
we put the creation of the array fixture into the setUp() method. Finally, we remove the redundant
code from the test methods and use the newly introduced instance variable, $this->stack, instead
of the method-local variable $stack with the assertEquals() assertion method.

Example 4.1. Using setUp() to create the stack fixture

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{
 protected $stack;

 protected function setUp()
 {
 $this->stack = [];
 }

 public function testEmpty()
 {
 $this->assertTrue(empty($this->stack));
 }

 public function testPush()
 {
 array_push($this->stack, 'foo');
 $this->assertEquals('foo', $this->stack[count($this->stack)-1]);
 $this->assertFalse(empty($this->stack));
 }

 public function testPop()
 {
 array_push($this->stack, 'foo');
 $this->assertEquals('foo', array_pop($this->stack));
 $this->assertTrue(empty($this->stack));
 }
}

Fixtures

28

?>

 The setUp() and tearDown() template methods are run once for each test method (and on
fresh instances) of the test case class.

 In addition, the setUpBeforeClass() and tearDownAfterClass() template methods
are called before the first test of the test case class is run and after the last test of the test case class
is run, respectively.

 The example below shows all template methods that are available in a test case class.

Example 4.2. Example showing all template methods available

<?php
use PHPUnit\Framework\TestCase;

class TemplateMethodsTest extends TestCase
{
 public static function setUpBeforeClass()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 protected function setUp()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 protected function assertPreConditions()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 public function testOne()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 $this->assertTrue(true);
 }

 public function testTwo()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 $this->assertTrue(false);
 }

 protected function assertPostConditions()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 protected function tearDown()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 public static function tearDownAfterClass()
 {
 fwrite(STDOUT, __METHOD__ . "\n");
 }

 protected function onNotSuccessfulTest(Exception $e)
 {
 fwrite(STDOUT, __METHOD__ . "\n");

Fixtures

29

 throw $e;
 }
}
?>

phpunit TemplateMethodsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

TemplateMethodsTest::setUpBeforeClass
TemplateMethodsTest::setUp
TemplateMethodsTest::assertPreConditions
TemplateMethodsTest::testOne
TemplateMethodsTest::assertPostConditions
TemplateMethodsTest::tearDown
.TemplateMethodsTest::setUp
TemplateMethodsTest::assertPreConditions
TemplateMethodsTest::testTwo
TemplateMethodsTest::tearDown
TemplateMethodsTest::onNotSuccessfulTest
FTemplateMethodsTest::tearDownAfterClass

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) TemplateMethodsTest::testTwo
Failed asserting that <boolean:false> is true.
/home/sb/TemplateMethodsTest.php:30

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

More setUp() than tearDown()
setUp() and tearDown() are nicely symmetrical in theory but not in practice. In practice, you
only need to implement tearDown() if you have allocated external resources like files or sockets in
setUp(). If your setUp() just creates plain PHP objects, you can generally ignore tearDown().
However, if you create many objects in your setUp(), you might want to unset() the variables
pointing to those objects in your tearDown() so they can be garbage collected. The garbage col-
lection of test case objects is not predictable.

Variations
What happens when you have two tests with slightly different setups? There are two possibilities:

• If the setUp() code differs only slightly, move the code that differs from the setUp() code to
the test method.

• If you really have a different setUp(), you need a different test case class. Name the class after
the difference in the setup.

Sharing Fixture
There are few good reasons to share fixtures between tests, but in most cases the need to share a fixture
between tests stems from an unresolved design problem.

A good example of a fixture that makes sense to share across several tests is a database connection:
you log into the database once and reuse the database connection instead of creating a new connection
for each test. This makes your tests run faster.

Fixtures

30

 Example 4.3, “Sharing fixture between the tests of a test suite” uses the setUpBeforeClass()
and tearDownAfterClass() template methods to connect to the database before the test case
class' first test and to disconnect from the database after the last test of the test case, respectively.

Example 4.3. Sharing fixture between the tests of a test suite

<?php
use PHPUnit\Framework\TestCase;

class DatabaseTest extends TestCase
{
 protected static $dbh;

 public static function setUpBeforeClass()
 {
 self::$dbh = new PDO('sqlite::memory:');
 }

 public static function tearDownAfterClass()
 {
 self::$dbh = null;
 }
}
?>

It cannot be emphasized enough that sharing fixtures between tests reduces the value of the tests.
The underlying design problem is that objects are not loosely coupled. You will achieve better results
solving the underlying design problem and then writing tests using stubs (see Chapter 9, Test Doubles),
than by creating dependencies between tests at runtime and ignoring the opportunity to improve your
design.

Global State
It is hard to test code that uses singletons. [http://googletesting.blogspot.com/2008/05/tott-using-de-
pendancy-injection-to.html] The same is true for code that uses global variables. Typically, the code
you want to test is coupled strongly with a global variable and you cannot control its creation. An
additional problem is the fact that one test's change to a global variable might break another test.

In PHP, global variables work like this:

• A global variable $foo = 'bar'; is stored as $GLOBALS['foo'] = 'bar';.

• The $GLOBALS variable is a so-called super-global variable.

• Super-global variables are built-in variables that are always available in all scopes.

• In the scope of a function or method, you may access the global variable $foo by either directly
accessing $GLOBALS['foo'] or by using global $foo; to create a local variable with a
reference to the global variable.

Besides global variables, static attributes of classes are also part of the global state.

 By default, PHPUnit runs your tests in a way where changes to global and super-global variables
($GLOBALS, $_ENV, $_POST, $_GET, $_COOKIE, $_SERVER, $_FILES, $_REQUEST) do not
affect other tests. Optionally, this isolation can be extended to static attributes of classes.

Note

The backup and restore operations for global variables and static class attributes use seri-
alize() and unserialize().

http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html

Fixtures

31

Objects of some classes (e.g., PDO) cannot be serialized and the backup operation will break
when such an object is stored e.g. in the $GLOBALS array.

 The @backupGlobals annotation that is discussed in the section called “@backupGlobals” can be
used to control the backup and restore operations for global variables. Alternatively, you can provide
a blacklist of global variables that are to be excluded from the backup and restore operations like this

class MyTest extends TestCase
{
 protected $backupGlobalsBlacklist = ['globalVariable'];

 // ...
}

Note

Setting the $backupGlobalsBlacklist property inside e.g. the setUp() method has
no effect.

 The @backupStaticAttributes annotation discussed in the section called “@backupStati-
cAttributes” can be used to back up all static property values in all declared classes before each test
and restore them afterwards.

It processes all classes that are declared at the time a test starts, not only the test class itself. It only
applies to static class properties, not static variables within functions.

Note

The @backupStaticAttributes operation is executed before a test method, but only
if it is enabled. If a static value was changed by a previously executed test that did not have
@backupStaticAttributes enabled, then that value will be backed up and restored —
not the originally declared default value. PHP does not record the originally declared default
value of any static variable.

The same applies to static properties of classes that were newly loaded/declared within a test.
They cannot be reset to their originally declared default value after the test, since that value
is unknown. Whichever value is set will leak into subsequent tests.

For unit tests, it is recommended to explicitly reset the values of static properties under test in
your setUp() code instead (and ideally also tearDown(), so as to not affect subsequently
executed tests).

You can provide a blacklist of static attributes that are to be excluded from the backup and restore
operations:

class MyTest extends TestCase
{
 protected $backupStaticAttributesBlacklist = [
 'className' => ['attributeName']
];

 // ...
}

Note

Setting the $backupStaticAttributesBlacklist property inside e.g. the set-
Up() method has no effect.

32

Chapter 5. Organizing Tests
 One of the goals of PHPUnit is that tests should be composable: we want to be able to run any number
or combination of tests together, for instance all tests for the whole project, or the tests for all classes
of a component that is part of the project, or just the tests for a single class.

PHPUnit supports different ways of organizing tests and composing them into a test suite. This chapter
shows the most commonly used approaches.

Composing a Test Suite Using the Filesystem
Probably the easiest way to compose a test suite is to keep all test case source files in a test directory.
PHPUnit can automatically discover and run the tests by recursively traversing the test directory.

Lets take a look at the test suite of the sebastianbergmann/money [http://github.com/sebastian-
bergmann/money/] library. Looking at this project's directory structure, we see that the test case class-
es in the tests directory mirror the package and class structure of the System Under Test (SUT)
in the src directory:

src tests
`-- Currency.php `-- CurrencyTest.php
`-- IntlFormatter.php `-- IntlFormatterTest.php
`-- Money.php `-- MoneyTest.php
`-- autoload.php

To run all tests for the library we just need to point the PHPUnit command-line test runner to the
test directory:

phpunit --bootstrap src/autoload.php tests
PHPUnit 5.4.0 by Sebastian Bergmann.

.................................

Time: 636 ms, Memory: 3.50Mb

OK (33 tests, 52 assertions)

Note

If you point the PHPUnit command-line test runner to a directory it will look for *Test.php
files.

To run only the tests that are declared in the CurrencyTest test case class in tests/
CurrencyTest.php we can use the following command:

phpunit --bootstrap src/autoload.php tests/CurrencyTest
PHPUnit 5.4.0 by Sebastian Bergmann.

........

Time: 280 ms, Memory: 2.75Mb

OK (8 tests, 8 assertions)

For more fine-grained control of which tests to run we can use the --filter option:

phpunit --bootstrap src/autoload.php --filter testObjectCanBeConstructedForValidConstructorArgument tests
PHPUnit 5.4.0 by Sebastian Bergmann.

http://github.com/sebastianbergmann/money/
http://github.com/sebastianbergmann/money/
http://github.com/sebastianbergmann/money/

Organizing Tests

33

..

Time: 167 ms, Memory: 3.00Mb

OK (2 test, 2 assertions)

Note

A drawback of this approach is that we have no control over the order in which the tests are
run. This can lead to problems with regard to test dependencies, see the section called “Test
Dependencies”. In the next section you will see how you can make the test execution order
explicit by using the XML configuration file.

Composing a Test Suite Using XML Configu-
ration

PHPUnit's XML configuration file (Appendix C, The XML Configuration File) can also be used to
compose a test suite. Example 5.1, “Composing a Test Suite Using XML Configuration” shows a
minimal phpunit.xml file that will add all *Test classes that are found in *Test.php files
when the tests directory is recursively traversed.

Example 5.1. Composing a Test Suite Using XML Configuration

<phpunit bootstrap="src/autoload.php">
 <testsuites>
 <testsuite name="money">
 <directory>tests</directory>
 </testsuite>
 </testsuites>
</phpunit>

If phpunit.xml or phpunit.xml.dist (in that order) exist in the current working directory
and --configuration is not used, the configuration will be automatically read from that file.

The order in which tests are executed can be made explicit:

Example 5.2. Composing a Test Suite Using XML Configuration

<phpunit bootstrap="src/autoload.php">
 <testsuites>
 <testsuite name="money">
 <file>tests/IntlFormatterTest.php</file>
 <file>tests/MoneyTest.php</file>
 <file>tests/CurrencyTest.php</file>
 </testsuite>
 </testsuites>
</phpunit>

34

Chapter 6. Risky Tests
PHPUnit can perform the additional checks documented below while it executes the tests.

Useless Tests
PHPUnit can be strict about tests that do not test anything. This check can be en-
abled by using the --report-useless-tests option on the commandline or by setting
beStrictAboutTestsThatDoNotTestAnything="true" in PHPUnit's XML configura-
tion file.

A test that does not perform an assertion will be marked as risky when this check is enabled. Expec-
tations on mock objects or annotations such as @expectedException count as an assertion.

Unintentionally Covered Code
PHPUnit can be strict about unintentionally covered code. This check can be en-
abled by using the --strict-coverage option on the commandline or by setting
checkForUnintentionallyCoveredCode="true" in PHPUnit's XML configuration file.

A test that is annotated with @covers and executes code that is not listed using a @covers or
@uses annotation will be marked as risky when this check is enabled.

Output During Test Execution
PHPUnit can be strict about output during tests. This check can be enabled by
using the --disallow-test-output option on the commandline or by setting
beStrictAboutOutputDuringTests="true" in PHPUnit's XML configuration file.

A test that emits output, for instance by invoking print in either the test code or the tested code, will
be marked as risky when this check is enabled.

Test Execution Timeout
A time limit can be enforced for the execution of a test if the PHP_Invoker package is
installed and the pcntl extension is available. The enforcing of this time limit can be en-
abled by using the --enforce-time-limit option on the commandline or by setting
beStrictAboutTestSize="true" in PHPUnit's XML configuration file.

A test annotated with @large will fail if it takes longer than 60 seconds to execute. This timeout is
configurable via the timeoutForLargeTests attribute in the XML configuration file.

A test annotated with @medium will fail if it takes longer than 10 seconds to execute. This timeout is
configurable via the timeoutForMediumTests attribute in the XML configuration file.

A test that is not annotated with @medium or @large will be treated as if it were annotated with
@small. A small test will fail if it takes longer than 1 second to execute. This timeout is configurable
via the timeoutForSmallTests attribute in the XML configuration file.

Global State Manipulation
PHPUnit can be strict about tests that manipulate global state. This check can be en-
abled by using the --strict-global-state option on the commandline or by setting
beStrictAboutChangesToGlobalState="true" in PHPUnit's XML configuration file.

35

Chapter 7. Incomplete and Skipped
Tests
Incomplete Tests

When you are working on a new test case class, you might want to begin by writing empty test methods
such as:

public function testSomething()
{
}

to keep track of the tests that you have to write. The problem with empty test methods is that they are
interpreted as a success by the PHPUnit framework. This misinterpretation leads to the test reports
being useless -- you cannot see whether a test is actually successful or just not yet implemented. Calling
$this->fail() in the unimplemented test method does not help either, since then the test will be
interpreted as a failure. This would be just as wrong as interpreting an unimplemented test as a success.

 If we think of a successful test as a green light and a test failure as a red light, we
need an additional yellow light to mark a test as being incomplete or not yet implemented.
PHPUnit_Framework_IncompleteTest is a marker interface for marking an exception that
is raised by a test method as the result of the test being incomplete or currently not implemented.
PHPUnit_Framework_IncompleteTestError is the standard implementation of this inter-
face.

Example 7.1, “Marking a test as incomplete” shows a test case class, SampleTest, that contains
one test method, testSomething(). By calling the convenience method markTestIncom-
plete() (which automatically raises an PHPUnit_Framework_IncompleteTestError ex-
ception) in the test method, we mark the test as being incomplete.

Example 7.1. Marking a test as incomplete

<?php
use PHPUnit\Framework\TestCase;

class SampleTest extends TestCase
{
 public function testSomething()
 {
 // Optional: Test anything here, if you want.
 $this->assertTrue(true, 'This should already work.');

 // Stop here and mark this test as incomplete.
 $this->markTestIncomplete(
 'This test has not been implemented yet.'
);
 }
}
?>

An incomplete test is denoted by an I in the output of the PHPUnit command-line test runner, as
shown in the following example:

phpunit --verbose SampleTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

I

Incomplete and Skipped Tests

36

Time: 0 seconds, Memory: 3.95Mb

There was 1 incomplete test:

1) SampleTest::testSomething
This test has not been implemented yet.

/home/sb/SampleTest.php:12
OK, but incomplete or skipped tests!
Tests: 1, Assertions: 1, Incomplete: 1.

Table 7.1, “API for Incomplete Tests” shows the API for marking tests as incomplete.

Table 7.1. API for Incomplete Tests

Method Meaning

void markTestIncomplete() Marks the current test as incomplete.

void markTestIncomplete(string
$message)

Marks the current test as incomplete using
$message as an explanatory message.

Skipping Tests
Not all tests can be run in every environment. Consider, for instance, a database abstraction layer that
has several drivers for the different database systems it supports. The tests for the MySQL driver can
of course only be run if a MySQL server is available.

Example 7.2, “Skipping a test” shows a test case class, DatabaseTest, that contains one test
method, testConnection(). In the test case class' setUp() template method we check whether
the MySQLi extension is available and use the markTestSkipped() method to skip the test if
it is not.

Example 7.2. Skipping a test

<?php
use PHPUnit\Framework\TestCase;

class DatabaseTest extends TestCase
{
 protected function setUp()
 {
 if (!extension_loaded('mysqli')) {
 $this->markTestSkipped(
 'The MySQLi extension is not available.'
);
 }
 }

 public function testConnection()
 {
 // ...
 }
}
?>

A test that has been skipped is denoted by an S in the output of the PHPUnit command-line test runner,
as shown in the following example:

phpunit --verbose DatabaseTest

Incomplete and Skipped Tests

37

PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

S

Time: 0 seconds, Memory: 3.95Mb

There was 1 skipped test:

1) DatabaseTest::testConnection
The MySQLi extension is not available.

/home/sb/DatabaseTest.php:9
OK, but incomplete or skipped tests!
Tests: 1, Assertions: 0, Skipped: 1.

Table 7.2, “API for Skipping Tests” shows the API for skipping tests.

Table 7.2. API for Skipping Tests

Method Meaning

void markTestSkipped() Marks the current test as skipped.

void markTestSkipped(string
$message)

Marks the current test as skipped using $mes-
sage as an explanatory message.

Skipping Tests using @requires
In addition to the above methods it is also possible to use the @requires annotation to express
common preconditions for a test case.

Table 7.3. Possible @requires usages

Type Possible Values Examples Another example

PHP Any PHP version iden-
tifier

@requires PHP 5.3.3 @requires PHP 5.4-dev

PHPUnit Any PHPUnit version
identifier

@requires PHPUnit
3.6.3

@requires PHPUnit 4.6

OS A regexp match-
ing PHP_OS [http://
php.net/manual/en/
reserved.constants.php#constant.php-
os]

@requires OS Linux @requires OS WIN32|
WINNT

function Any valid parame-
ter to function_exists
[http://php.net/
function_exists]

@requires function
imap_open

@requires function
ReflectionMethod::setAccessible

extension Any extension name
along with an optional
version identifier

@requires extension
mysqli

@requires extension re-
dis 2.2.0

Example 7.3. Skipping test cases using @requires

<?php
use PHPUnit\Framework\TestCase;

/**
 * @requires extension mysqli

http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/function_exists
http://php.net/function_exists
http://php.net/function_exists

Incomplete and Skipped Tests

38

 */
class DatabaseTest extends TestCase
{
 /**
 * @requires PHP 5.3
 */
 public function testConnection()
 {
 // Test requires the mysqli extension and PHP >= 5.3
 }

 // ... All other tests require the mysqli extension
}
?>

If you are using syntax that doesn't compile with a certain PHP Version look into the xml configuration
for version dependent includes in the section called “Test Suites”

39

Chapter 8. Database Testing
Many beginner and intermediate unit testing examples in any programming language suggest that it
is perfectly easy to test your application's logic with simple tests. For database-centric applications
this is far away from the reality. Start using Wordpress, TYPO3 or Symfony with Doctrine or Propel,
for example, and you will easily experience considerable problems with PHPUnit: just because the
database is so tightly coupled to these libraries.

Note

Make sure you have the PHP extension pdo and database specific extensions such as
pdo_mysql installed. Otherwise the examples shown below will not work.

You probably know this scenario from your daily work and projects, where you want to put your fresh
or experienced PHPUnit skills to work and get stuck by one of the following problems:

1. The method you want to test executes a rather large JOIN operation and uses the data to calculate
some important results.

2. Your business logic performs a mix of SELECT, INSERT, UPDATE and DELETE statements.

3. You need to setup test data in (possibly much) more than two tables to get reasonable initial data
for the methods you want to test.

The DbUnit extension considerably simplifies the setup of a database for testing purposes and allows
you to verify the contents of a database after performing a series of operations.

Supported Vendors for Database Testing
DbUnit currently supports MySQL, PostgreSQL, Oracle and SQLite. Through Zend Framework
[http://framework.zend.com] or Doctrine 2 [http://www.doctrine-project.org] integrations it has ac-
cess to other database systems such as IBM DB2 or Microsoft SQL Server.

Difficulties in Database Testing
There is a good reason why all the examples on unit testing do not include interactions with the data-
base: these kind of tests are both complex to setup and maintain. While testing against your database
you need to take care of the following variables:

• The database schema and tables

• Inserting the rows required for the test into these tables

• Verifying the state of the database after your test has run

• Cleanup the database for each new test

Because many database APIs such as PDO, MySQLi or OCI8 are cumbersome to use and verbose in
writing doing these steps manually is an absolute nightmare.

Test code should be as short and precise as possible for several reasons:

• You do not want to modify considerable amount of test code for little changes in your production
code.

• You want to be able to read and understand the test code easily, even months after writing it.

http://framework.zend.com
http://framework.zend.com
http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

40

Additionally you have to realize that the database is essentially a global input variable to your code.
Two tests in your test suite could run against the same database, possibly reusing data multiple times.
Failures in one test can easily affect the result of the following tests making your testing experience
very difficult. The previously mentioned cleanup step is of major importance to solve the “database
is a global input” problem.

DbUnit helps to simplify all these problems with database testing in an elegant way.

What PHPUnit cannot help you with is the fact that database tests are very slow compared to tests not
using the database. Depending on how large the interactions with your database are your tests could
run a considerable amount of time. However, if you keep the amount of data used for each test small
and try to test as much code using non-database tests you can easily get away in under a minute even
for large test suites.

The Doctrine 2 project [http://www.doctrine-project.org]'s test suite, for example, currently has a test
suite of about 1000 tests where nearly half of them accesses the database and still runs in 15 seconds
against a MySQL database on a standard desktop computer.

The four stages of a database test
In his book on xUnit Test Patterns Gerard Meszaros lists the four stages of a unit-test:

1. Set up fixture

2. Exercise System Under Test

3. Verify outcome

4. Teardown

What is a Fixture?

A fixture describes the initial state your application and database are in when you
execute a test.

Testing the database requires you to hook into at least the setup and teardown to clean-up and write the
required fixture data into your tables. However, the database extension has good reason to revert the
four stages in a database test to resemble the following workflow that is executed for each single test:

1. Clean-Up Database
Since there is always a first test that runs against the database you do not know exactly if there is
already data in the tables. PHPUnit will execute a TRUNCATE against all the tables you specified
to reset their status to empty.

2. Set up fixture
PHPUnit will then iterate over all the fixture rows specified and insert them into their respective tables.

3–5. Run Test, Verify outcome and Teardown
After the database is reset and loaded with its initial state the actual test is executed by PHPUnit. This
part of the test code does not require awareness of the Database Extension at all, you can go on and
test whatever you like with your code.

In your test use a special assertion called assertDataSetsEqual() for verification purposes,
however, this is entirely optional. This feature will be explained in the section “Database Assertions”.

http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

41

Configuration of a PHPUnit Database Test-
Case

Usually when using PHPUnit your testcases would extend the phpunit\framework\TestCase
class in the following way:

<?php
use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 public function testCalculate()
 {
 $this->assertEquals(2, 1 + 1);
 }
}
?>

If you want to test code that works with the Database Extension the setup is a bit more complex and
you have to extend a different abstract TestCase requiring you to implement two abstract methods
getConnection() and getDataSet():

<?php
class MyGuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 /**
 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection
 */
 public function getConnection()
 {
 $pdo = new PDO('sqlite::memory:');
 return $this->createDefaultDBConnection($pdo, ':memory:');
 }

 /**
 * @return PHPUnit_Extensions_Database_DataSet_IDataSet
 */
 public function getDataSet()
 {
 return $this->createFlatXMLDataSet(dirname(__FILE__).'/_files/guestbook-seed.xml');
 }
}
?>

Implementing getConnection()
To allow the clean-up and fixture loading functionalities to work the PHPUnit Database Extension
requires access to a database connection abstracted across vendors through the PDO library. It is im-
portant to note that your application does not need to be based on PDO to use PHPUnit's database
extension, the connection is merely used for the clean-up and fixture setup.

In the previous example we create an in-memory Sqlite connection and pass it to the cre-
ateDefaultDBConnection method which wraps the PDO instance and the second parame-
ter (the database-name) in a very simple abstraction layer for database connections of the type
PHPUnit_Extensions_Database_DB_IDatabaseConnection.

The section “Using the Database Connection” explains the API of this interface and how you can
make the best use of it.

Database Testing

42

Implementing getDataSet()
The getDataSet() method defines how the initial state of the database should look before each
test is executed. The state of a database is abstracted through the concepts DataSet and DataTable both
being represented by the interfaces PHPUnit_Extensions_Database_DataSet_IDataSet
and PHPUnit_Extensions_Database_DataSet_IDataTable. The next section will de-
scribe in detail how these concepts work and what the benefits are for using them in database testing.

For the implementation we only need to know that the getDataSet() method is called once during
setUp() to retrieve the fixture data-set and insert it into the database. In the example we are using
a factory method createFlatXMLDataSet($filename) that represents a data-set through an
XML representation.

What about the Database Schema (DDL)?
PHPUnit assumes that the database schema with all its tables, triggers, sequences and views is created
before a test is run. This means you as developer have to make sure that the database is correctly setup
before running the suite.

There are several means to achieve this pre-condition to database testing.

1. If you are using a persistent database (not Sqlite Memory) you can easily setup the database once
with tools such as phpMyAdmin for MySQL and re-use the database for every test-run.

2. If you are using libraries such as Doctrine 2 [http://www.doctrine-project.org] or Propel [http://
www.propelorm.org/] you can use their APIs to create the database schema you need once before
you run the tests. You can utilize PHPUnit's Bootstrap and Configuration [textui.html] capabilities
to execute this code whenever your tests are run.

Tip: Use your own Abstract Database TestCase
From the previous implementation example you can easily see that getConnection() method is
pretty static and could be re-used in different database test-cases. Additionally to keep performance
of your tests good and database overhead low you can refactor the code a little bit to get a generic
abstract test case for your application, which still allows you to specify a different data-fixture for
each test case:

<?php
abstract class MyApp_Tests_DatabaseTestCase extends PHPUnit_Extensions_Database_TestCase
{
 // only instantiate pdo once for test clean-up/fixture load
 static private $pdo = null;

 // only instantiate PHPUnit_Extensions_Database_DB_IDatabaseConnection once per test
 private $conn = null;

 final public function getConnection()
 {
 if ($this->conn === null) {
 if (self::$pdo == null) {
 self::$pdo = new PDO('sqlite::memory:');
 }
 $this->conn = $this->createDefaultDBConnection(self::$pdo, ':memory:');
 }

 return $this->conn;
 }
}
?>

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.propelorm.org/
http://www.propelorm.org/
http://www.propelorm.org/
textui.html
textui.html

Database Testing

43

This has the database connection hardcoded in the PDO connection though. PHPUnit has anoth-
er awesome feature that could make this testcase even more generic. If you use the XML Config-
uration [appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables] you
could make the database connection configurable per test-run. First let's create a “phpunit.xml” file in
our tests/ directory of the application that looks like:

<?xml version="1.0" encoding="UTF-8" ?>
<phpunit>
 <php>
 <var name="DB_DSN" value="mysql:dbname=myguestbook;host=localhost" />
 <var name="DB_USER" value="user" />
 <var name="DB_PASSWD" value="passwd" />
 <var name="DB_DBNAME" value="myguestbook" />
 </php>
</phpunit>

We can now modify our test-case to look like:

<?php
abstract class Generic_Tests_DatabaseTestCase extends PHPUnit_Extensions_Database_TestCase
{
 // only instantiate pdo once for test clean-up/fixture load
 static private $pdo = null;

 // only instantiate PHPUnit_Extensions_Database_DB_IDatabaseConnection once per test
 private $conn = null;

 final public function getConnection()
 {
 if ($this->conn === null) {
 if (self::$pdo == null) {
 self::$pdo = new PDO($GLOBALS['DB_DSN'], $GLOBALS['DB_USER'], $GLOBALS['DB_PASSWD']);
 }
 $this->conn = $this->createDefaultDBConnection(self::$pdo, $GLOBALS['DB_DBNAME']);
 }

 return $this->conn;
 }
}
?>

We can now run the database test suite using different configurations from the command-line interface:

user@desktop> phpunit --configuration developer-a.xml MyTests/
user@desktop> phpunit --configuration developer-b.xml MyTests/

The possibility to run the database tests against different database targets easily is very important if
you are developing on the development machine. If several developers run the database tests against
the same database connection you can easily experience test-failures because of race-conditions.

Understanding DataSets and DataTables
A central concept of PHPUnit's Database Extension are DataSets and DataTables. You should try to
understand this simple concept to master database testing with PHPUnit. The DataSet and DataTable
are an abstraction layer around your database tables, rows and columns. A simple API hides the un-
derlying database contents in an object structure, which can also be implemented by other non-data-
base sources.

This abstraction is necessary to compare the actual contents of a database against the expected contents.
Expectations can be represented as XML, YAML, CSV files or PHP array for example. The DataSet

appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables

Database Testing

44

and DataTable interfaces enable the comparison of these conceptually different sources, emulating
relational database storage in a semantically similar approach.

A workflow for database assertions in your tests then consists of three simple steps:

• Specify one or more tables in your database by table name (actual dataset)

• Specify the expected dataset in your preferred format (YAML, XML, ..)

• Assert that both dataset representations equal each other.

Assertions are not the only use-case for the DataSet and DataTable in PHPUnit's Database Extension.
As shown in the previous section they also describe the initial contents of a database. You are forced
to define a fixture dataset by the Database TestCase, which is then used to:

• Delete all the rows from the tables specified in the dataset.

• Write all the rows in the data-tables into the database.

Available Implementations
There are three different types of datasets/datatables:

• File-Based DataSets and DataTables

• Query-Based DataSet and DataTable

• Filter and Composition DataSets and DataTables

The file-based datasets and tables are generally used for the initial fixture and to describe the expected
state of the database.

Flat XML DataSet

The most common dataset is called Flat XML. It is a very simple xml format where a tag inside the root
node <dataset> represents exactly one row in the database. The tags name equals the table to insert
the row into and an attribute represents the column. An example for a simple guestbook application
could look like this:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" created="2010-04-24 17:15:23" />
 <guestbook id="2" content="I like it!" user="nancy" created="2010-04-26 12:14:20" />
</dataset>

This is obviously easy to write. Here <guestbook> is the table name where two rows are inserted
into each with four columns “id”, “content”, “user” and “created” with their respective values.

However, this simplicity comes at a cost.

From the previous example it isn't obvious how you would specify an empty table. You can insert a
tag with no attributes with the name of the empty table. A flat xml file for an empty guestbook table
would then look like:

<?xml version="1.0" ?>
<dataset>
 <guestbook />
</dataset>

The handling of NULL values with the flat xml dataset is tedious. A NULL value is different than an
empty string value in almost any database (Oracle being an exception), something that is difficult to

Database Testing

45

describe in the flat xml format. You can represent a NULL's value by omitting the attribute from the
row specification. If our guestbook would allow anonymous entries represented by a NULL value in
the user column, a hypothetical state of the guestbook table could look like:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" created="2010-04-24 17:15:23" />
 <guestbook id="2" content="I like it!" created="2010-04-26 12:14:20" />
</dataset>

In this case the second entry is posted anonymously. However, this leads to a serious problem with
column recognition. During dataset equality assertions each dataset has to specify what columns a
table holds. If an attribute is NULL for all the rows of a data-table, how would the Database Extension
know that the column should be part of the table?

The flat xml dataset makes a crucial assumption now, defining that the attributes on the first defined
row of a table define the columns of this table. In the previous example this would mean “id”, “con-
tent”, “user” and “created” are columns of the guestbook table. For the second row where “user” is
not defined a NULL would be inserted into the database.

When the first guestbook entry is deleted from the dataset only “id”, “content” and “created” would
be columns of the guestbook table, since “user” is not specified.

To use the Flat XML dataset effectively when NULL values are relevant the first row of each table
must not contain any NULL value and only successive rows are allowed to omit attributes. This can
be awkward, since the order of the rows is a relevant factor for database assertions.

In turn, if you specify only a subset of the table columns in the Flat XML dataset all the omitted values
are set to their default values. This will lead to errors if one of the omitted columns is defined as “NOT
NULL DEFAULT NULL”.

In conclusion I can only advise using the Flat XML datasets if you do not need NULL values.

You can create a flat xml dataset instance from within your Database TestCase by calling the
createFlatXmlDataSet($filename) method:

<?php
class MyTestCase extends PHPUnit_Extensions_Database_TestCase
{
 public function getDataSet()
 {
 return $this->createFlatXmlDataSet('myFlatXmlFixture.xml');
 }
}
?>

XML DataSet

There is another more structured XML dataset, which is a bit more verbose to write but avoids the
NULL problems of the Flat XML dataset. Inside the root node <dataset> you can specify <ta-
ble>, <column>, <row>, <value> and <null /> tags. An equivalent dataset to the previously
defined Guestbook Flat XML looks like:

<?xml version="1.0" ?>
<dataset>
 <table name="guestbook">
 <column>id</column>
 <column>content</column>
 <column>user</column>
 <column>created</column>
 <row>

Database Testing

46

 <value>1</value>
 <value>Hello buddy!</value>
 <value>joe</value>
 <value>2010-04-24 17:15:23</value>
 </row>
 <row>
 <value>2</value>
 <value>I like it!</value>
 <null />
 <value>2010-04-26 12:14:20</value>
 </row>
 </table>
</dataset>

Any defined <table> has a name and requires a definition of all the columns with their names. It
can contain zero or any positive number of nested <row> elements. Defining no <row> element
means the table is empty. The <value> and <null /> tags have to be specified in the order of the
previously given <column> elements. The <null /> tag obviously means that the value is NULL.

You can create a xml dataset instance from within your Database TestCase by calling the
createXmlDataSet($filename) method:

<?php
class MyTestCase extends PHPUnit_Extensions_Database_TestCase
{
 public function getDataSet()
 {
 return $this->createXMLDataSet('myXmlFixture.xml');
 }
}
?>

MySQL XML DataSet

This new XML format is specific to the MySQL database server [http://www.mysql.com]. Support
for it was added in PHPUnit 3.5. Files in this format can be generated using the mysqldump [http://
dev.mysql.com/doc/refman/5.0/en/mysqldump.html] utility. Unlike CSV datasets, which mysql-
dump also supports, a single file in this XML format can contain data for multiple tables. You can
create a file in this format by invoking mysqldump like so:

mysqldump --xml -t -u [username] --password=[password] [database] > /path/to/file.xml

This file can be used in your Database TestCase by calling the
createMySQLXMLDataSet($filename) method:

<?php
class MyTestCase extends PHPUnit_Extensions_Database_TestCase
{
 public function getDataSet()
 {
 return $this->createMySQLXMLDataSet('/path/to/file.xml');
 }
}
?>

YAML DataSet

Alternatively, you can use YAML dataset for the guestbook example:

guestbook:

http://www.mysql.com
http://www.mysql.com
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html

Database Testing

47

 -
 id: 1
 content: "Hello buddy!"
 user: "joe"
 created: 2010-04-24 17:15:23
 -
 id: 2
 content: "I like it!"
 user:
 created: 2010-04-26 12:14:20

This is simple, convient AND it solves the NULL issue that the similar Flat XML dataset has. A
NULL in YAML is just the column name without no value specified. An empty string is specified
as column1: "".

The YAML Dataset has no factory method on the Database TestCase currently, so you have to instan-
tiate it manually:

<?php
class YamlGuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 protected function getDataSet()
 {
 return new PHPUnit_Extensions_Database_DataSet_YamlDataSet(
 dirname(__FILE__)."/_files/guestbook.yml"
);
 }
}
?>

CSV DataSet

Another file-based dataset is based on CSV files. Each table of the dataset is represented as a single
CSV file. For our guestbook example we would define a guestbook-table.csv file:

id,content,user,created
1,"Hello buddy!","joe","2010-04-24 17:15:23"
2,"I like it!","nancy","2010-04-26 12:14:20"

While this is very convenient for editing with Excel or OpenOffice, you cannot specify NULL values
with the CSV dataset. An empty column will lead to the database default empty value being inserted
into the column.

You can create a CSV DataSet by calling:

<?php
class CsvGuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 protected function getDataSet()
 {
 $dataSet = new PHPUnit_Extensions_Database_DataSet_CsvDataSet();
 $dataSet->addTable('guestbook', dirname(__FILE__)."/_files/guestbook.csv");
 return $dataSet;
 }
}
?>

Array DataSet

There is no Array based DataSet in PHPUnit's Database Extension (yet), but we can implement our
own easily. Our guestbook example should look like:

Database Testing

48

<?php
class ArrayGuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 protected function getDataSet()
 {
 return new MyApp_DbUnit_ArrayDataSet(
 [
 'guestbook' => [
 [
 'id' => 1,
 'content' => 'Hello buddy!',
 'user' => 'joe',
 'created' => '2010-04-24 17:15:23'
],
 [
 'id' => 2,
 'content' => 'I like it!',
 'user' => null,
 'created' => '2010-04-26 12:14:20'
],
],
]
);
 }
}
?>

A PHP DataSet has obvious advantages over all the other file-based datasets:

• PHP Arrays can obviously handle NULL values.

• You won't need additional files for assertions and can specify them directly in the TestCase.

For this dataset like the Flat XML, CSV and YAML DataSets the keys of the first specified row define
the table's column names, in the previous case this would be “id”, “content”, “user” and “created”.

The implementation for this Array DataSet is simple and straightforward:

<?php
class MyApp_DbUnit_ArrayDataSet extends PHPUnit_Extensions_Database_DataSet_AbstractDataSet
{
 /**
 * @var array
 */
 protected $tables = [];

 /**
 * @param array $data
 */
 public function __construct(array $data)
 {
 foreach ($data AS $tableName => $rows) {
 $columns = [];
 if (isset($rows[0])) {
 $columns = array_keys($rows[0]);
 }

 $metaData = new PHPUnit_Extensions_Database_DataSet_DefaultTableMetaData($tableName, $columns);
 $table = new PHPUnit_Extensions_Database_DataSet_DefaultTable($metaData);

 foreach ($rows AS $row) {
 $table->addRow($row);
 }
 $this->tables[$tableName] = $table;

Database Testing

49

 }
 }

 protected function createIterator($reverse = false)
 {
 return new PHPUnit_Extensions_Database_DataSet_DefaultTableIterator($this->tables, $reverse);
 }

 public function getTable($tableName)
 {
 if (!isset($this->tables[$tableName])) {
 throw new InvalidArgumentException("$tableName is not a table in the current database.");
 }

 return $this->tables[$tableName];
 }
}
?>

Query (SQL) DataSet

For database assertions you do not only need the file-based datasets but also a Query/SQL based
Dataset that contains the actual contents of the database. This is where the Query DataSet shines:

<?php
$ds = new PHPUnit_Extensions_Database_DataSet_QueryDataSet($this->getConnection());
$ds->addTable('guestbook');
?>

Adding a table just by name is an implicit way to define the data-table with the following query:

<?php
$ds = new PHPUnit_Extensions_Database_DataSet_QueryDataSet($this->getConnection());
$ds->addTable('guestbook', 'SELECT * FROM guestbook');
?>

You can make use of this by specifying arbitrary queries for your tables, for example restricting rows,
column or adding ORDER BY clauses:

<?php
$ds = new PHPUnit_Extensions_Database_DataSet_QueryDataSet($this->getConnection());
$ds->addTable('guestbook', 'SELECT id, content FROM guestbook ORDER BY created DESC');
?>

The section on Database Assertions will show some more details on how to make use of the Query
DataSet.

Database (DB) Dataset

Accessing the Test Connection you can automatically create a DataSet that consists of all the tables
with their content in the database specified as second parameter to the Connections Factory method.

You can either create a dataset for the complete database as shown in testGuestbook(), or restrict
it to a set of specified table names with a whitelist as shown in testFilteredGuestbook()
method.

<?php
class MySqlGuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 /**

Database Testing

50

 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection
 */
 public function getConnection()
 {
 $database = 'my_database';
 $user = 'my_user';
 $password = 'my_password';
 $pdo = new PDO('mysql:...', $user, $password);
 return $this->createDefaultDBConnection($pdo, $database);
 }

 public function testGuestbook()
 {
 $dataSet = $this->getConnection()->createDataSet();
 // ...
 }

 public function testFilteredGuestbook()
 {
 $tableNames = ['guestbook'];
 $dataSet = $this->getConnection()->createDataSet($tableNames);
 // ...
 }
}
?>

Replacement DataSet

I have been talking about NULL problems with the Flat XML and CSV DataSet, but there is a slightly
complicated workaround to get both types of datasets working with NULLs.

The Replacement DataSet is a decorator for an existing dataset and allows you to replace values in
any column of the dataset by another replacement value. To get our guestbook example working with
NULL values we specify the file like:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" created="2010-04-24 17:15:23" />
 <guestbook id="2" content="I like it!" user="##NULL##" created="2010-04-26 12:14:20" />
</dataset>

We then wrap the Flat XML DataSet into a Replacement DataSet:

<?php
class ReplacementTest extends PHPUnit_Extensions_Database_TestCase
{
 public function getDataSet()
 {
 $ds = $this->createFlatXmlDataSet('myFlatXmlFixture.xml');
 $rds = new PHPUnit_Extensions_Database_DataSet_ReplacementDataSet($ds);
 $rds->addFullReplacement('##NULL##', null);
 return $rds;
 }
}
?>

DataSet Filter

If you have a large fixture file you can use the DataSet Filter for white- and blacklisting of tables and
columns that should be contained in a sub-dataset. This is especially handy in combination with the
DB DataSet to filter the columns of the datasets.

Database Testing

51

<?php
class DataSetFilterTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testIncludeFilteredGuestbook()
 {
 $tableNames = ['guestbook'];
 $dataSet = $this->getConnection()->createDataSet();

 $filterDataSet = new PHPUnit_Extensions_Database_DataSet_DataSetFilter($dataSet);
 $filterDataSet->addIncludeTables(['guestbook']);
 $filterDataSet->setIncludeColumnsForTable('guestbook', ['id', 'content']);
 // ..
 }

 public function testExcludeFilteredGuestbook()
 {
 $tableNames = ['guestbook'];
 $dataSet = $this->getConnection()->createDataSet();

 $filterDataSet = new PHPUnit_Extensions_Database_DataSet_DataSetFilter($dataSet);
 $filterDataSet->addExcludeTables(['foo', 'bar', 'baz']); // only keep the guestbook table!
 $filterDataSet->setExcludeColumnsForTable('guestbook', ['user', 'created']);
 // ..
 }
}
?>

NOTE You cannot use both exclude and include column filtering on the same table,
only on different ones. Plus it is only possible to either white- or blacklist tables,
not both of them.

Composite DataSet

The composite DataSet is very useful for aggregating several already existing datasets into a single
dataset. When several datasets contain the same table the rows are appended in the specified order.
For example if we have two datasets fixture1.xml:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" created="2010-04-24 17:15:23" />
</dataset>

and fixture2.xml:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="2" content="I like it!" user="##NULL##" created="2010-04-26 12:14:20" />
</dataset>

Using the Composite DataSet we can aggregate both fixture files:

<?php
class CompositeTest extends PHPUnit_Extensions_Database_TestCase
{
 public function getDataSet()
 {
 $ds1 = $this->createFlatXmlDataSet('fixture1.xml');
 $ds2 = $this->createFlatXmlDataSet('fixture2.xml');

 $compositeDs = new PHPUnit_Extensions_Database_DataSet_CompositeDataSet();
 $compositeDs->addDataSet($ds1);
 $compositeDs->addDataSet($ds2);

Database Testing

52

 return $compositeDs;
 }
}
?>

Beware of Foreign Keys
During Fixture SetUp PHPUnit's Database Extension inserts the rows into the database in the order
they are specified in your fixture. If your database schema uses foreign keys this means you have to
specify the tables in an order that does not cause foreign key constraints to fail.

Implementing your own DataSets/DataTables
To understand the internals of DataSets and DataTables, lets have a look at the interface of a DataSet.
You can skip this part if you do not plan to implement your own DataSet or DataTable.

<?php
interface PHPUnit_Extensions_Database_DataSet_IDataSet extends IteratorAggregate
{
 public function getTableNames();
 public function getTableMetaData($tableName);
 public function getTable($tableName);
 public function assertEquals(PHPUnit_Extensions_Database_DataSet_IDataSet $other);

 public function getReverseIterator();
}
?>

The public interface is used internally by the assertDataSetsEqual() assertion on the Data-
base TestCase to check for dataset quality. From the IteratorAggregate interface the IDataSet
inherits the getIterator() method to iterate over all tables of the dataset. The reverse iterator al-
lows PHPUnit to truncate tables opposite the order they were created to satisfy foreign key constraints.

Depending on the implementation different approaches are taken to add table instances to a dataset. For
example, tables are added internally during construction from the source file in all file-based datasets
such as YamlDataSet, XmlDataSet or FlatXmlDataSet.

A table is also represented by the following interface:

<?php
interface PHPUnit_Extensions_Database_DataSet_ITable
{
 public function getTableMetaData();
 public function getRowCount();
 public function getValue($row, $column);
 public function getRow($row);
 public function assertEquals(PHPUnit_Extensions_Database_DataSet_ITable $other);
}
?>

Except the getTableMetaData() method it is pretty self-explainatory. The used methods
are all required for the different assertions of the Database Extension that are explained in
the next chapter. The getTableMetaData() method has to return an implementation of
the PHPUnit_Extensions_Database_DataSet_ITableMetaData interface, which de-
scribes the structure of the table. It holds information on:

• The table name

• An array of column-names of the table, ordered by their appearance in the result-set.

Database Testing

53

• An array of the primary-key columns.

This interface also has an assertion that checks if two instances of Table Metadata equal each other,
which is used by the data-set equality assertion.

The Connection API
There are three interesting methods on the Connection interface which has to be returned from the
getConnection() method on the Database TestCase:

<?php
interface PHPUnit_Extensions_Database_DB_IDatabaseConnection
{
 public function createDataSet(Array $tableNames = NULL);
 public function createQueryTable($resultName, $sql);
 public function getRowCount($tableName, $whereClause = NULL);

 // ...
}
?>

1. The createDataSet() method creates a Database (DB) DataSet as described in the DataSet
implementations section.

<?php
class ConnectionTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testCreateDataSet()
 {
 $tableNames = ['guestbook'];
 $dataSet = $this->getConnection()->createDataSet();
 }
}
?>

2. The createQueryTable() method can be used to create instances of a QueryTable, give them
a result name and SQL query. This is a handy method when it comes to result/table assertions as
will be shown in the next section on the Database Assertions API.

<?php
class ConnectionTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testCreateQueryTable()
 {
 $tableNames = ['guestbook'];
 $queryTable = $this->getConnection()->createQueryTable('guestbook', 'SELECT * FROM guestbook');
 }
}
?>

3. The getRowCount() method is a convienent way to access the number of rows in a table, op-
tionally filtered by an additional where clause. This can be used with a simple equality assertion:

<?php
class ConnectionTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testGetRowCount()
 {
 $this->assertEquals(2, $this->getConnection()->getRowCount('guestbook'));
 }
}

Database Testing

54

?>

Database Assertions API
For a testing tool the Database Extension surely provides some assertions that you can use to verify the
current state of the database, tables and the row-count of tables. This section describes this functionality
in detail:

Asserting the Row-Count of a Table
It is often helpful to check if a table contains a specific amount of rows. You can easily achieve this
without additional glue code using the Connection API. Say we wanted to check that after insertion
of a row into our guestbook we not only have the two initial entries that have accompanied us in all
the previous examples, but a third one:

<?php
class GuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testAddEntry()
 {
 $this->assertEquals(2, $this->getConnection()->getRowCount('guestbook'), "Pre-Condition");

 $guestbook = new Guestbook();
 $guestbook->addEntry("suzy", "Hello world!");

 $this->assertEquals(3, $this->getConnection()->getRowCount('guestbook'), "Inserting failed");
 }
}
?>

Asserting the State of a Table
The previous assertion is helpful, but we surely want to check the actual contents of the table to verify
that all the values were written into the correct columns. This can be achieved by a table assertion.

For this we would define a Query Table instance which derives its content from a table name and SQL
query and compare it to a File/Array Based Data Set:

<?php
class GuestbookTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testAddEntry()
 {
 $guestbook = new Guestbook();
 $guestbook->addEntry("suzy", "Hello world!");

 $queryTable = $this->getConnection()->createQueryTable(
 'guestbook', 'SELECT * FROM guestbook'
);
 $expectedTable = $this->createFlatXmlDataSet("expectedBook.xml")
 ->getTable("guestbook");
 $this->assertTablesEqual($expectedTable, $queryTable);
 }
}
?>

Now we have to write the expectedBook.xml Flat XML file for this assertion:

<?xml version="1.0" ?>

Database Testing

55

<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" created="2010-04-24 17:15:23" />
 <guestbook id="2" content="I like it!" user="nancy" created="2010-04-26 12:14:20" />
 <guestbook id="3" content="Hello world!" user="suzy" created="2010-05-01 21:47:08" />
</dataset>

This assertion would only pass on exactly one second of the universe though, on 2010–05–01
21:47:08. Dates pose a special problem to database testing and we can circumvent the failure by omit-
ting the “created” column from the assertion.

The adjusted expectedBook.xml Flat XML file would probably have to look like the following to make
the assertion pass:

<?xml version="1.0" ?>
<dataset>
 <guestbook id="1" content="Hello buddy!" user="joe" />
 <guestbook id="2" content="I like it!" user="nancy" />
 <guestbook id="3" content="Hello world!" user="suzy" />
</dataset>

We have to fix up the Query Table call:

<?php
$queryTable = $this->getConnection()->createQueryTable(
 'guestbook', 'SELECT id, content, user FROM guestbook'
);
?>

Asserting the Result of a Query
You can also assert the result of complex queries with the Query Table approach, just specify a result
name with a query and compare it to a dataset:

<?php
class ComplexQueryTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testComplexQuery()
 {
 $queryTable = $this->getConnection()->createQueryTable(
 'myComplexQuery', 'SELECT complexQuery...'
);
 $expectedTable = $this->createFlatXmlDataSet("complexQueryAssertion.xml")
 ->getTable("myComplexQuery");
 $this->assertTablesEqual($expectedTable, $queryTable);
 }
}
?>

Asserting the State of Multiple Tables
For sure you can assert the state of multiple tables at once and compare a query dataset against a file
based dataset. There are two different ways for DataSet assertions.

1. You can use the Database (DB) DataSet from the Connection and compare it to a File-Based
DataSet.

<?php
class DataSetAssertionsTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testCreateDataSetAssertion()

Database Testing

56

 {
 $dataSet = $this->getConnection()->createDataSet(['guestbook']);
 $expectedDataSet = $this->createFlatXmlDataSet('guestbook.xml');
 $this->assertDataSetsEqual($expectedDataSet, $dataSet);
 }
}
?>

2. You can construct the DataSet on your own:

<?php
class DataSetAssertionsTest extends PHPUnit_Extensions_Database_TestCase
{
 public function testManualDataSetAssertion()
 {
 $dataSet = new PHPUnit_Extensions_Database_DataSet_QueryDataSet();
 $dataSet->addTable('guestbook', 'SELECT id, content, user FROM guestbook'); // additional tables
 $expectedDataSet = $this->createFlatXmlDataSet('guestbook.xml');

 $this->assertDataSetsEqual($expectedDataSet, $dataSet);
 }
}
?>

Frequently Asked Questions

Will PHPUnit (re-)create the database schema for each
test?

No, PHPUnit requires all database objects to be available when the suite is started. The Database,
tables, sequences, triggers and views have to be created before you run the test suite.

Doctrine 2 [http://www.doctrine-project.org] or eZ Components [http://www.ezcomponents.org] have
powerful tools that allow you to create the database schema from pre-defined datastructures. However,
these have to be hooked into the PHPUnit extension to allow an automatic database re-creation before
the complete test-suite is run.

Since each test completely cleans the database you are not even required to re-create the database for
each test-run. A permanently available database works perfectly.

Am I required to use PDO in my application for the
Database Extension to work?

No, PDO is only required for the fixture clean- and set-up and for assertions. You can use whatever
database abstraction you want inside your own code.

What can I do, when I get a “Too much Connections”
Error?

If you do not cache the PDO instance that is created from the TestCase getConnection() method
the number of connections to the database is increasing by one or more with each database test. With
default configuration MySql only allows 100 concurrent connections other vendors also have maxi-
mum connection limits.

The SubSection “Use your own Abstract Database TestCase” shows how you can prevent this error
from happening by using a single cached PDO instance in all your tests.

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.ezcomponents.org
http://www.ezcomponents.org

Database Testing

57

How to handle NULL with Flat XML / CSV Datasets?
Do not do this. Instead, you should use either the XML or the YAML DataSets.

58

Chapter 9. Test Doubles
Gerard Meszaros introduces the concept of Test Doubles in [Meszaros2007] like this:

 Sometimes it is just plain hard to test the system under test (SUT) because it depends
on other components that cannot be used in the test environment. This could be
because they aren't available, they will not return the results needed for the test or
because executing them would have undesirable side effects. In other cases, our test
strategy requires us to have more control or visibility of the internal behavior of
the SUT.

 When we are writing a test in which we cannot (or chose not to) use a real depend-
ed-on component (DOC), we can replace it with a Test Double. The Test Double
doesn't have to behave exactly like the real DOC; it merely has to provide the same
API as the real one so that the SUT thinks it is the real one!

—Gerard Meszaros

The createMock($type) and getMockBuilder($type) methods provided by PHPUnit can
be used in a test to automatically generate an object that can act as a test double for the specified
original type (interface or class name). This test double object can be used in every context where an
object of the original type is expected or required.

The createMock($type) method immediately returns a test double object for the specified type
(interface or class). The creation of this test double is performed using best practice defaults (the
__construct() and __clone() methods of the original class are not executed and the arguments
passed to a method of the test double will not be cloned. If these defaults are not what you need then
you can use the getMockBuilder($type) method to customize the test double generation using
a fluent interface.

By default, all methods of the original class are replaced with a dummy implementation that just
returns null (without calling the original method). Using the will($this->returnValue())
method, for instance, you can configure these dummy implementations to return a value when called.

Limitation: final, private, and static methods

Please note that final, private and static methods cannot be stubbed or mocked.
They are ignored by PHPUnit's test double functionality and retain their original behavior.

Stubs
 The practice of replacing an object with a test double that (optionally) returns configured return values
is referred to as stubbing. You can use a stub to "replace a real component on which the SUT depends
so that the test has a control point for the indirect inputs of the SUT. This allows the test to force the
SUT down paths it might not otherwise execute".

 Example 9.2, “Stubbing a method call to return a fixed value” shows how to stub method calls
and set up return values. We first use the createMock() method that is provided by the ph-
punit\framework\TestCase class to set up a stub object that looks like an object of Some-
Class (Example 9.1, “The class we want to stub”). We then use the Fluent Interface [http://
martinfowler.com/bliki/FluentInterface.html] that PHPUnit provides to specify the behavior for the
stub. In essence, this means that you do not need to create several temporary objects and wire them
together afterwards. Instead, you chain method calls as shown in the example. This leads to more
readable and "fluent" code.

Example 9.1. The class we want to stub

<?php

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

Test Doubles

59

use PHPUnit\Framework\TestCase;

class SomeClass
{
 public function doSomething()
 {
 // Do something.
 }
}
?>

Example 9.2. Stubbing a method call to return a fixed value

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{
 public function testStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->willReturn('foo');

 // Calling $stub->doSomething() will now return
 // 'foo'.
 $this->assertEquals('foo', $stub->doSomething());
 }
}
?>

Limitation: Methods named "method"

The example shown above only works when the original class does not declare a method
named "method".

If the original class does declare a method named "method" then $stub-
>expects($this->any())->method('doSomething')-
>willReturn('foo'); has to be used.

"Behind the scenes", PHPUnit automatically generates a new PHP class that implements the desired
behavior when the createMock() method is used.

Example 9.3, “Using the Mock Builder API can be used to configure the generated test double class”
shows an example of how to use the Mock Builder's fluent interface to configure the creation of the
test double.

Example 9.3. Using the Mock Builder API can be used to configure the generated
test double class

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

Test Doubles

60

 public function testStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->willReturn('foo');

 // Calling $stub->doSomething() will now return
 // 'foo'.
 $this->assertEquals('foo', $stub->doSomething());
 }
}
?>

In the examples so far we have been returning simple values using willReturn($value). This
short syntax is the same as will($this->returnValue($value)). We can use variations on
this longer syntax to achieve more complex stubbing behaviour.

Sometimes you want to return one of the arguments of a method call (unchanged) as the result of a
stubbed method call. Example 9.4, “Stubbing a method call to return one of the arguments” shows
how you can achieve this using returnArgument() instead of returnValue().

Example 9.4. Stubbing a method call to return one of the arguments

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{
 public function testReturnArgumentStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->returnArgument(0));

 // $stub->doSomething('foo') returns 'foo'
 $this->assertEquals('foo', $stub->doSomething('foo'));

 // $stub->doSomething('bar') returns 'bar'
 $this->assertEquals('bar', $stub->doSomething('bar'));
 }
}
?>

When testing a fluent interface, it is sometimes useful to have a stubbed method return a reference
to the stubbed object. Example 9.5, “Stubbing a method call to return a reference to the stub object”
shows how you can use returnSelf() to achieve this.

Example 9.5. Stubbing a method call to return a reference to the stub object

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

Test Doubles

61

 public function testReturnSelf()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->returnSelf());

 // $stub->doSomething() returns $stub
 $this->assertSame($stub, $stub->doSomething());
 }
}
?>

Sometimes a stubbed method should return different values depending on a predefined list of argu-
ments. You can use returnValueMap() to create a map that associates arguments with corre-
sponding return values. See Example 9.6, “Stubbing a method call to return the value from a map”
for an example.

Example 9.6. Stubbing a method call to return the value from a map

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{
 public function testReturnValueMapStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Create a map of arguments to return values.
 $map = [
 ['a', 'b', 'c', 'd'],
 ['e', 'f', 'g', 'h']
);

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->returnValueMap($map));

 // $stub->doSomething() returns different values depending on
 // the provided arguments.
 $this->assertEquals('d', $stub->doSomething('a', 'b', 'c'));
 $this->assertEquals('h', $stub->doSomething('e', 'f', 'g'));
 }
}
?>

When the stubbed method call should return a calculated value instead of a fixed one (see return-
Value()) or an (unchanged) argument (see returnArgument()), you can use returnCall-
back() to have the stubbed method return the result of a callback function or method. See Exam-
ple 9.7, “Stubbing a method call to return a value from a callback” for an example.

Example 9.7. Stubbing a method call to return a value from a callback

<?php
use PHPUnit\Framework\TestCase;

Test Doubles

62

class StubTest extends TestCase
{
 public function testReturnCallbackStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->returnCallback('str_rot13'));

 // $stub->doSomething($argument) returns str_rot13($argument)
 $this->assertEquals('fbzrguvat', $stub->doSomething('something'));
 }
}
?>

A simpler alternative to setting up a callback method may be to specify a list of desired return values.
You can do this with the onConsecutiveCalls() method. See Example 9.8, “Stubbing a method
call to return a list of values in the specified order” for an example.

Example 9.8. Stubbing a method call to return a list of values in the specified
order

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{
 public function testOnConsecutiveCallsStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->onConsecutiveCalls(2, 3, 5, 7));

 // $stub->doSomething() returns a different value each time
 $this->assertEquals(2, $stub->doSomething());
 $this->assertEquals(3, $stub->doSomething());
 $this->assertEquals(5, $stub->doSomething());
 }
}
?>

Instead of returning a value, a stubbed method can also raise an exception. Example 9.9, “Stubbing a
method call to throw an exception” shows how to use throwException() to do this.

Example 9.9. Stubbing a method call to throw an exception

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{
 public function testThrowExceptionStub()
 {
 // Create a stub for the SomeClass class.
 $stub = $this->createMock(SomeClass::class);

Test Doubles

63

 // Configure the stub.
 $stub->method('doSomething')
 ->will($this->throwException(new Exception));

 // $stub->doSomething() throws Exception
 $stub->doSomething();
 }
}
?>

Alternatively, you can write the stub yourself and improve your design along the way. Widely used
resources are accessed through a single façade, so you can easily replace the resource with the stub.
For example, instead of having direct database calls scattered throughout the code, you have a single
Database object, an implementor of the IDatabase interface. Then, you can create a stub imple-
mentation of IDatabase and use it for your tests. You can even create an option for running the
tests with the stub database or the real database, so you can use your tests for both local testing during
development and integration testing with the real database.

Functionality that needs to be stubbed out tends to cluster in the same object, improving cohesion.
By presenting the functionality with a single, coherent interface you reduce the coupling with the rest
of the system.

Mock Objects
The practice of replacing an object with a test double that verifies expectations, for instance asserting
that a method has been called, is referred to as mocking.

 You can use a mock object "as an observation point that is used to verify the indirect outputs of the
SUT as it is exercised. Typically, the mock object also includes the functionality of a test stub in that it
must return values to the SUT if it hasn't already failed the tests but the emphasis is on the verification
of the indirect outputs. Therefore, a mock object is a lot more than just a test stub plus assertions; it
is used in a fundamentally different way" (Gerard Meszaros).

Limitation: Automatic verification of expectations

Only mock objects generated within the scope of a test will be verified automatically by
PHPUnit. Mock objects generated in data providers, for instance, or injected into the test
using the @depends annotation will not be verified automatically by PHPUnit.

Here is an example: suppose we want to test that the correct method, update() in our example, is
called on an object that observes another object. Example 9.10, “The Subject and Observer classes that
are part of the System under Test (SUT)” shows the code for the Subject and Observer classes
that are part of the System under Test (SUT).

Example 9.10. The Subject and Observer classes that are part of the System
under Test (SUT)

<?php
use PHPUnit\Framework\TestCase;

class Subject
{
 protected $observers = [];
 protected $name;

 public function __construct($name)
 {
 $this->name = $name;

Test Doubles

64

 }

 public function getName()
 {
 return $this->name;
 }

 public function attach(Observer $observer)
 {
 $this->observers[] = $observer;
 }

 public function doSomething()
 {
 // Do something.
 // ...

 // Notify observers that we did something.
 $this->notify('something');
 }

 public function doSomethingBad()
 {
 foreach ($this->observers as $observer) {
 $observer->reportError(42, 'Something bad happened', $this);
 }
 }

 protected function notify($argument)
 {
 foreach ($this->observers as $observer) {
 $observer->update($argument);
 }
 }

 // Other methods.
}

class Observer
{
 public function update($argument)
 {
 // Do something.
 }

 public function reportError($errorCode, $errorMessage, Subject $subject)
 {
 // Do something
 }

 // Other methods.
}
?>

 Example 9.11, “Testing that a method gets called once and with a specified argument” shows how to
use a mock object to test the interaction between Subject and Observer objects.

We first use the getMockBuilder() method that is provided by the phpunit\frame-
work\TestCase class to set up a mock object for the Observer. Since we give an array as the
second (optional) parameter for the getMock() method, only the update() method of the Ob-
server class is replaced by a mock implementation.

Because we are interested in verifying that a method is called, and which arguments it is called with,
we introduce the expects() and with() methods to specify how this interaction should look.

Test Doubles

65

Example 9.11. Testing that a method gets called once and with a specified
argument

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{
 public function testObserversAreUpdated()
 {
 // Create a mock for the Observer class,
 // only mock the update() method.
 $observer = $this->getMockBuilder(Observer::class)
 ->setMethods(['update'])
 ->getMock();

 // Set up the expectation for the update() method
 // to be called only once and with the string 'something'
 // as its parameter.
 $observer->expects($this->once())
 ->method('update')
 ->with($this->equalTo('something'));

 // Create a Subject object and attach the mocked
 // Observer object to it.
 $subject = new Subject('My subject');
 $subject->attach($observer);

 // Call the doSomething() method on the $subject object
 // which we expect to call the mocked Observer object's
 // update() method with the string 'something'.
 $subject->doSomething();
 }
}
?>

The with() method can take any number of arguments, corresponding to the number of arguments
to the method being mocked. You can specify more advanced constraints on the method's arguments
than a simple match.

Example 9.12. Testing that a method gets called with a number of arguments
constrained in different ways

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{
 public function testErrorReported()
 {
 // Create a mock for the Observer class, mocking the
 // reportError() method
 $observer = $this->getMockBuilder(Observer::class)
 ->setMethods(['reportError'])
 ->getMock();

 $observer->expects($this->once())
 ->method('reportError')
 ->with(
 $this->greaterThan(0),
 $this->stringContains('Something'),
 $this->anything()

Test Doubles

66

);

 $subject = new Subject('My subject');
 $subject->attach($observer);

 // The doSomethingBad() method should report an error to the observer
 // via the reportError() method
 $subject->doSomethingBad();
 }
}
?>

The withConsecutive() method can take any number of arrays of arguments, depending on the
calls you want to test against. Each array is a list of constraints corresponding to the arguments of the
method being mocked, like in with().

Example 9.13. Testing that a method gets called two times with specific
arguments.

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{
 public function testFunctionCalledTwoTimesWithSpecificArguments()
 {
 $mock = $this->getMockBuilder(stdClass::class)
 ->setMethods(['set'])
 ->getMock();

 $mock->expects($this->exactly(2))
 ->method('set')
 ->withConsecutive(
 [$this->equalTo('foo'), $this->greaterThan(0)],
 [$this->equalTo('bar'), $this->greaterThan(0)]
);

 $mock->set('foo', 21);
 $mock->set('bar', 48);
 }
}
?>

The callback() constraint can be used for more complex argument verification. This constraint
takes a PHP callback as its only argument. The PHP callback will receive the argument to be verified
as its only argument and should return true if the argument passes verification and false otherwise.

Example 9.14. More complex argument verification

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{
 public function testErrorReported()
 {
 // Create a mock for the Observer class, mocking the
 // reportError() method
 $observer = $this->getMockBuilder(Observer::class)
 ->setMethods(['reportError'])
 ->getMock();

Test Doubles

67

 $observer->expects($this->once())
 ->method('reportError')
 ->with($this->greaterThan(0),
 $this->stringContains('Something'),
 $this->callback(function($subject){
 return is_callable([$subject, 'getName')] &&
 $subject->getName() == 'My subject';
 }));

 $subject = new Subject('My subject');
 $subject->attach($observer);

 // The doSomethingBad() method should report an error to the observer
 // via the reportError() method
 $subject->doSomethingBad();
 }
}
?>

Example 9.15. Testing that a method gets called once and with the identical
object as was passed

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{
 public function testIdenticalObjectPassed()
 {
 $expectedObject = new stdClass;

 $mock = $this->getMockBuilder(stdClass::class)
 ->setMethods(['foo'])
 ->getMock();

 $mock->expects($this->once())
 ->method('foo')
 ->with($this->identicalTo($expectedObject));

 $mock->foo($expectedObject);
 }
}
?>

Example 9.16. Create a mock object with cloning parameters enabled

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{
 public function testIdenticalObjectPassed()
 {
 $cloneArguments = true;

 $mock = $this->getMockBuilder(stdClass::class)
 ->enableArgumentCloning()
 ->getMock();

 // now your mock clones parameters so the identicalTo constraint
 // will fail.
 }

Test Doubles

68

}
?>

Table A.1, “Constraints” shows the constraints that can be applied to method arguments and Table 9.1,
“Matchers” shows the matchers that are available to specify the number of invocations.

Table 9.1. Matchers

Matcher Meaning

PHPUnit_ Framework_ MockObject_
Matcher_ AnyInvokedCount any()

Returns a matcher that matches when the method
it is evaluated for is executed zero or more
times.

PHPUnit_ Framework_ MockObject_
Matcher_ InvokedCount never()

Returns a matcher that matches when the method
it is evaluated for is never executed.

PHPUnit_ Framework_ MockObject_
Matcher_ InvokedAtLeastOnce
atLeastOnce()

Returns a matcher that matches when the method
it is evaluated for is executed at least once.

PHPUnit_ Framework_ MockObject_
Matcher_ InvokedCount once()

Returns a matcher that matches when the method
it is evaluated for is executed exactly once.

PHPUnit_ Framework_ MockOb-
ject_ Matcher_ InvokedCount
exactly(int $count)

Returns a matcher that matches when the method
it is evaluated for is executed exactly $count
times.

PHPUnit_ Framework_ MockObject_
Matcher_ InvokedAtIndex at(int
$index)

Returns a matcher that matches when the method
it is evaluated for is invoked at the given $in-
dex.

Note

The $index parameter for the at() matcher refers to the index, starting at zero, in all
method invocations for a given mock object. Exercise caution when using this matcher as it
can lead to brittle tests which are too closely tied to specific implementation details.

 As mentioned in the beginning, when the defaults used by the createMock() method to generate
the test double do not match your needs then you can use the getMockBuilder($type) method
to customize the test double generation using a fluent interface. Here is a list of methods provided
by the Mock Builder:

• setMethods(array $methods) can be called on the Mock Builder object to specify the
methods that are to be replaced with a configurable test double. The behavior of the other methods
is not changed. If you call setMethods(null), then no methods will be replaced.

• setConstructorArgs(array $args) can be called to provide a parameter array that is
passed to the original class' constructor (which is not replaced with a dummy implementation by
default).

• setMockClassName($name) can be used to specify a class name for the generated test double
class.

• disableOriginalConstructor() can be used to disable the call to the original class' con-
structor.

• disableOriginalClone() can be used to disable the call to the original class' clone construc-
tor.

• disableAutoload() can be used to disable __autoload() during the generation of the test
double class.

Test Doubles

69

Prophecy
Prophecy [https://github.com/phpspec/prophecy] is a "highly opinionated yet very powerful and flex-
ible PHP object mocking framework. Though initially it was created to fulfil phpspec2 needs, it is
flexible enough to be used inside any testing framework out there with minimal effort".

PHPUnit has built-in support for using Prophecy to create test doubles. Example 9.17, “Testing that
a method gets called once and with a specified argument” shows how the same test shown in Exam-
ple 9.11, “Testing that a method gets called once and with a specified argument” can be expressed
using Prophecy's philosophy of prophecies and revelations:

Example 9.17. Testing that a method gets called once and with a specified
argument

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{
 public function testObserversAreUpdated()
 {
 $subject = new Subject('My subject');

 // Create a prophecy for the Observer class.
 $observer = $this->prophesize(Observer::class);

 // Set up the expectation for the update() method
 // to be called only once and with the string 'something'
 // as its parameter.
 $observer->update('something')->shouldBeCalled();

 // Reveal the prophecy and attach the mock object
 // to the Subject.
 $subject->attach($observer->reveal());

 // Call the doSomething() method on the $subject object
 // which we expect to call the mocked Observer object's
 // update() method with the string 'something'.
 $subject->doSomething();
 }
}
?>

Please refer to the documentation [https://github.com/phpspec/prophecy#how-to-use-it] for Prophecy
for further details on how to create, configure, and use stubs, spies, and mocks using this alternative
test double framework.

Mocking Traits and Abstract Classes
 The getMockForTrait() method returns a mock object that uses a specified trait. All abstract
methods of the given trait are mocked. This allows for testing the concrete methods of a trait.

Example 9.18. Testing the concrete methods of a trait

<?php
use PHPUnit\Framework\TestCase;

trait AbstractTrait
{

https://github.com/phpspec/prophecy
https://github.com/phpspec/prophecy
https://github.com/phpspec/prophecy#how-to-use-it
https://github.com/phpspec/prophecy#how-to-use-it

Test Doubles

70

 public function concreteMethod()
 {
 return $this->abstractMethod();
 }

 public abstract function abstractMethod();
}

class TraitClassTest extends TestCase
{
 public function testConcreteMethod()
 {
 $mock = $this->getMockForTrait(AbstractTrait::class);

 $mock->expects($this->any())
 ->method('abstractMethod')
 ->will($this->returnValue(true));

 $this->assertTrue($mock->concreteMethod());
 }
}
?>

 The getMockForAbstractClass() method returns a mock object for an abstract class. All
abstract methods of the given abstract class are mocked. This allows for testing the concrete methods
of an abstract class.

Example 9.19. Testing the concrete methods of an abstract class

<?php
use PHPUnit\Framework\TestCase;

abstract class AbstractClass
{
 public function concreteMethod()
 {
 return $this->abstractMethod();
 }

 public abstract function abstractMethod();
}

class AbstractClassTest extends TestCase
{
 public function testConcreteMethod()
 {
 $stub = $this->getMockForAbstractClass(AbstractClass::class);

 $stub->expects($this->any())
 ->method('abstractMethod')
 ->will($this->returnValue(true));

 $this->assertTrue($stub->concreteMethod());
 }
}
?>

Stubbing and Mocking Web Services
 When your application interacts with a web service you want to test it without actually interacting with
the web service. To make the stubbing and mocking of web services easy, the getMockFromWs-

Test Doubles

71

dl() can be used just like getMock() (see above). The only difference is that getMockFromWs-
dl() returns a stub or mock based on a web service description in WSDL and getMock() returns
a stub or mock based on a PHP class or interface.

Example 9.20, “Stubbing a web service” shows how getMockFromWsdl() can be used to stub,
for example, the web service described in GoogleSearch.wsdl.

Example 9.20. Stubbing a web service

<?php
use PHPUnit\Framework\TestCase;

class GoogleTest extends TestCase
{
 public function testSearch()
 {
 $googleSearch = $this->getMockFromWsdl(
 'GoogleSearch.wsdl', 'GoogleSearch'
);

 $directoryCategory = new stdClass;
 $directoryCategory->fullViewableName = '';
 $directoryCategory->specialEncoding = '';

 $element = new stdClass;
 $element->summary = '';
 $element->URL = 'https://phpunit.de/';
 $element->snippet = '...';
 $element->title = 'PHPUnit';
 $element->cachedSize = '11k';
 $element->relatedInformationPresent = true;
 $element->hostName = 'phpunit.de';
 $element->directoryCategory = $directoryCategory;
 $element->directoryTitle = '';

 $result = new stdClass;
 $result->documentFiltering = false;
 $result->searchComments = '';
 $result->estimatedTotalResultsCount = 3.9000;
 $result->estimateIsExact = false;
 $result->resultElements = [$element];
 $result->searchQuery = 'PHPUnit';
 $result->startIndex = 1;
 $result->endIndex = 1;
 $result->searchTips = '';
 $result->directoryCategories = [];
 $result->searchTime = 0.248822;

 $googleSearch->expects($this->any())
 ->method('doGoogleSearch')
 ->will($this->returnValue($result));

 /**
 * $googleSearch->doGoogleSearch() will now return a stubbed result and
 * the web service's doGoogleSearch() method will not be invoked.
 */
 $this->assertEquals(
 $result,
 $googleSearch->doGoogleSearch(
 '00000000000000000000000000000000',
 'PHPUnit',
 0,
 1,

Test Doubles

72

 false,
 '',
 false,
 '',
 '',
 ''
)
);
 }
}
?>

Mocking the Filesystem
vfsStream [https://github.com/mikey179/vfsStream] is a stream wrapper [http://www.php.net/
streams] for a virtual filesystem [http://en.wikipedia.org/wiki/Virtual_file_system] that may be help-
ful in unit tests to mock the real filesystem.

Simply add a dependency on mikey179/vfsStream to your project's composer.json file if
you use Composer [https://getcomposer.org/] to manage the dependencies of your project. Here is a
minimal example of a composer.json file that just defines a development-time dependency on
PHPUnit 4.6 and vfsStream:

{
 "require-dev": {
 "phpunit/phpunit": "~4.6",
 "mikey179/vfsStream": "~1"
 }
}

Example 9.21, “A class that interacts with the filesystem” shows a class that interacts with the filesys-
tem.

Example 9.21. A class that interacts with the filesystem

<?php
use PHPUnit\Framework\TestCase;

class Example
{
 protected $id;
 protected $directory;

 public function __construct($id)
 {
 $this->id = $id;
 }

 public function setDirectory($directory)
 {
 $this->directory = $directory . DIRECTORY_SEPARATOR . $this->id;

 if (!file_exists($this->directory)) {
 mkdir($this->directory, 0700, true);
 }
 }
}?>

Without a virtual filesystem such as vfsStream we cannot test the setDirectory() method in iso-
lation from external influence (see Example 9.22, “Testing a class that interacts with the filesystem”).

https://github.com/mikey179/vfsStream
https://github.com/mikey179/vfsStream
http://www.php.net/streams
http://www.php.net/streams
http://www.php.net/streams
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Virtual_file_system
https://getcomposer.org/
https://getcomposer.org/

Test Doubles

73

Example 9.22. Testing a class that interacts with the filesystem

<?php
use PHPUnit\Framework\TestCase;

class ExampleTest extends TestCase
{
 protected function setUp()
 {
 if (file_exists(dirname(__FILE__) . '/id')) {
 rmdir(dirname(__FILE__) . '/id');
 }
 }

 public function testDirectoryIsCreated()
 {
 $example = new Example('id');
 $this->assertFalse(file_exists(dirname(__FILE__) . '/id'));

 $example->setDirectory(dirname(__FILE__));
 $this->assertTrue(file_exists(dirname(__FILE__) . '/id'));
 }

 protected function tearDown()
 {
 if (file_exists(dirname(__FILE__) . '/id')) {
 rmdir(dirname(__FILE__) . '/id');
 }
 }
}
?>

The approach above has several drawbacks:

• As with any external resource, there might be intermittent problems with the filesystem. This makes
tests interacting with it flaky.

• In the setUp() and tearDown() methods we have to ensure that the directory does not exist
before and after the test.

• When the test execution terminates before the tearDown() method is invoked the directory will
stay in the filesystem.

Example 9.23, “Mocking the filesystem in a test for a class that interacts with the filesystem” shows
how vfsStream can be used to mock the filesystem in a test for a class that interacts with the filesystem.

Example 9.23. Mocking the filesystem in a test for a class that interacts with the
filesystem

<?php
use PHPUnit\Framework\TestCase;

class ExampleTest extends TestCase
{
 public function setUp()
 {
 vfsStreamWrapper::register();
 vfsStreamWrapper::setRoot(new vfsStreamDirectory('exampleDir'));
 }

 public function testDirectoryIsCreated()
 {

Test Doubles

74

 $example = new Example('id');
 $this->assertFalse(vfsStreamWrapper::getRoot()->hasChild('id'));

 $example->setDirectory(vfsStream::url('exampleDir'));
 $this->assertTrue(vfsStreamWrapper::getRoot()->hasChild('id'));
 }
}
?>

This has several advantages:

• The test itself is more concise.

• vfsStream gives the test developer full control over what the filesystem environment looks like to
the tested code.

• Since the filesystem operations do not operate on the real filesystem anymore, cleanup operations
in a tearDown() method are no longer required.

75

Chapter 10. Testing Practices
You can always write more tests. However, you will quickly find that only a fraction
of the tests you can imagine are actually useful. What you want is to write tests that
fail even though you think they should work, or tests that succeed even though you
think they should fail. Another way to think of it is in cost/benefit terms. You want
to write tests that will pay you back with information.

—Erich Gamma

During Development
 When you need to make a change to the internal structure of the software you are working on
to make it easier to understand and cheaper to modify without changing its observable behav-
ior, a test suite is invaluable in applying these so called refactorings [http://martinfowler.com/bli-
ki/DefinitionOfRefactoring.html] safely. Otherwise, you might not notice the system breaking while
you are carrying out the restructuring.

The following conditions will help you to improve the code and design of your project, while using
unit tests to verify that the refactoring's transformation steps are, indeed, behavior-preserving and do
not introduce errors:

1. All unit tests run correctly.

2. The code communicates its design principles.

3. The code contains no redundancies.

4. The code contains the minimal number of classes and methods.

When you need to add new functionality to the system, write the tests first. Then, you will be done
developing when the test runs. This practice will be discussed in detail in the next chapter.

During Debugging
When you get a defect report, your impulse might be to fix the defect as quickly as possible. Experience
shows that this impulse will not serve you well; it is likely that the fix for the defect causes another
defect.

You can hold your impulse in check by doing the following:

1. Verify that you can reproduce the defect.

2. Find the smallest-scale demonstration of the defect in the code. For example, if a number appears
incorrectly in an output, find the object that is computing that number.

3. Write an automated test that fails now but will succeed when the defect is fixed.

4. Fix the defect.

Finding the smallest reliable reproduction of the defect gives you the opportunity to really examine
the cause of the defect. The test you write will improve the chances that when you fix the defect, you
really fix it, because the new test reduces the likelihood of undoing the fix with future code changes.
All the tests you wrote before reduce the likelihood of inadvertently causing a different problem.

Unit testing offers many advantages:

• Testing gives code authors and reviewers confidence that patches produce the
correct results.

http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html

Testing Practices

76

• Authoring testcases is a good impetus for developers to discover edge cases.

• Testing provides a good way to catch regressions quickly, and to make sure that
no regression will be repeated twice.

• Unit tests provide working examples for how to use an API and can significantly
aid documentation efforts.

Overall, integrated unit testing makes the cost and risk of any individual change
smaller. It will allow the project to make [...] major architectural improvements [...]
quickly and confidently.

—Benjamin Smedberg

77

Chapter 11. Code Coverage Analysis
In computer science, code coverage is a measure used to describe the degree to
which the source code of a program is tested by a particular test suite. A program
with high code coverage has been more thoroughly tested and has a lower chance
of containing software bugs than a program with low code coverage.

—Wikipedia

 In this chapter you will learn all about PHPUnit's code coverage functionality that provides an in-
sight into what parts of the production code are executed when the tests are run. It makes use of the
PHP_CodeCoverage [https://github.com/sebastianbergmann/php-code-coverage] component, which
in turn leverages the code coverage functionality provided by the Xdebug [http://xdebug.org/] exten-
sion for PHP.

Note

Xdebug is not distributed as part of PHPUnit. If you receive a notice while running tests
that the Xdebug extension is not loaded, it means that Xdebug is either not installed or not
configured properly. Before you can use the code coverage analysis features in PHPUnit, you
should read the Xdebug installation guide [http://xdebug.org/docs/install].

PHPUnit can generate an HTML-based code coverage report as well as XML-based logfiles with code
coverage information in various formats (Clover, Crap4J, PHPUnit). Code coverage information can
also be reported as text (and printed to STDOUT) and exported as PHP code for further processing.

Please refer to Chapter 3, The Command-Line Test Runner for a list of commandline switches that
control code coverage functionality as well as the section called “Logging” for the relevant configu-
ration settings.

Software Metrics for Code Coverage
Various software metrics exist to measure code coverage:

Line Coverage The Line Coverage software metric measures whether each ex-
ecutable line was executed.

Function and Method Coverage The Function and Method Coverage software metric mea-
sures whether each function or method has been invoked.
PHP_CodeCoverage only considers a function or method as
covered when all of its executable lines are covered.

Class and Trait Coverage The Class and Trait Coverage software metric measures
whether each method of a class or trait is covered.
PHP_CodeCoverage only considers a class or trait as covered
when all of its methods are covered.

Opcode Coverage The Opcode Coverage software metric measures whether each
opcode of a function or method has been executed while run-
ning the test suite. A line of code usually compiles into more
than one opcode. Line Coverage regards a line of code as cov-
ered as soon as one of its opcodes is executed.

Branch Coverage The Branch Coverage software metric measures whether the
boolean expression of each control structure evaluated to both
true and false while running the test suite.

Path Coverage The Path Coverage software metric measures whether each of
the possible execution paths in a function or method has been

https://github.com/sebastianbergmann/php-code-coverage
https://github.com/sebastianbergmann/php-code-coverage
http://xdebug.org/
http://xdebug.org/
http://xdebug.org/docs/install
http://xdebug.org/docs/install

Code Coverage Analysis

78

followed while running the test suite. An execution path is a
unique sequence of branches from the entry of the function or
method to its exit.

Change Risk Anti-Patterns (CRAP)
Index

The Change Risk Anti-Patterns (CRAP) Index is calculated
based on the cyclomatic complexity and code coverage of a unit
of code. Code that is not too complex and has an adequate test
coverage will have a low CRAP index. The CRAP index can be
lowered by writing tests and by refactoring the code to lower
its complexity.

Note

The Opcode Coverage, Branch Coverage, and Path Coverage software metrics are not yet
supported by PHP_CodeCoverage.

Whitelisting Files
 It is mandatory to configure a whitelist for telling PHPUnit which sourcecode files to include in the
code coverage report. This can either be done using the --whitelist commandline option or via
the configuration file (see the section called “Whitelisting Files for Code Coverage”).

Optionally, all whitelisted files can be added to the code coverage report by setting
addUncoveredFilesFromWhitelist="true" in your PHPUnit configuration (see the sec-
tion called “Whitelisting Files for Code Coverage”). This allows the inclusion of files that are not tested
yet at all. If you want to get information about which lines of such an uncovered file are executable, for
instance, you also need to set processUncoveredFilesFromWhitelist="true" in your
PHPUnit configuration (see the section called “Whitelisting Files for Code Coverage”).

Note

Please note that the loading of sourcecode files that is performed when
processUncoveredFilesFromWhitelist="true" is set can cause problems
when a sourcecode file contains code outside the scope of a class or function, for instance.

Ignoring Code Blocks
 Sometimes you have blocks of code that you cannot test and that you may want to ignore during
code coverage analysis. PHPUnit lets you do this using the @codeCoverageIgnore, @code-
CoverageIgnoreStart and @codeCoverageIgnoreEnd annotations as shown in Exam-
ple 11.1, “Using the @codeCoverageIgnore, @codeCoverageIgnoreStart and @code-
CoverageIgnoreEnd annotations”.

Example 11.1. Using the @codeCoverageIgnore,
@codeCoverageIgnoreStart and @codeCoverageIgnoreEnd
annotations

<?php
use PHPUnit\Framework\TestCase;

/**
 * @codeCoverageIgnore
 */
class Foo
{
 public function bar()
 {

Code Coverage Analysis

79

 }
}

class Bar
{
 /**
 * @codeCoverageIgnore
 */
 public function foo()
 {
 }
}

if (false) {
 // @codeCoverageIgnoreStart
 print '*';
 // @codeCoverageIgnoreEnd
}

exit; // @codeCoverageIgnore
?>

The ignored lines of code (marked as ignored using the annotations) are counted as executed (if they
are executable) and will not be highlighted.

Specifying Covered Methods
 The @covers annotation (see Table B.1, “Annotations for specifying which methods are covered by
a test”) can be used in the test code to specify which method(s) a test method wants to test. If provided,
only the code coverage information for the specified method(s) will be considered. Example 11.2,
“Tests that specify which method they want to cover” shows an example.

Example 11.2. Tests that specify which method they want to cover

<?php
use PHPUnit\Framework\TestCase;

class BankAccountTest extends TestCase
{
 protected $ba;

 protected function setUp()
 {
 $this->ba = new BankAccount;
 }

 /**
 * @covers BankAccount::getBalance
 */
 public function testBalanceIsInitiallyZero()
 {
 $this->assertEquals(0, $this->ba->getBalance());
 }

 /**
 * @covers BankAccount::withdrawMoney
 */
 public function testBalanceCannotBecomeNegative()
 {
 try {
 $this->ba->withdrawMoney(1);
 }

Code Coverage Analysis

80

 catch (BankAccountException $e) {
 $this->assertEquals(0, $this->ba->getBalance());

 return;
 }

 $this->fail();
 }

 /**
 * @covers BankAccount::depositMoney
 */
 public function testBalanceCannotBecomeNegative2()
 {
 try {
 $this->ba->depositMoney(-1);
 }

 catch (BankAccountException $e) {
 $this->assertEquals(0, $this->ba->getBalance());

 return;
 }

 $this->fail();
 }

 /**
 * @covers BankAccount::getBalance
 * @covers BankAccount::depositMoney
 * @covers BankAccount::withdrawMoney
 */
 public function testDepositWithdrawMoney()
 {
 $this->assertEquals(0, $this->ba->getBalance());
 $this->ba->depositMoney(1);
 $this->assertEquals(1, $this->ba->getBalance());
 $this->ba->withdrawMoney(1);
 $this->assertEquals(0, $this->ba->getBalance());
 }
}
?>

 It is also possible to specify that a test should not cover any method by using the @coversNothing
annotation (see the section called “@coversNothing”). This can be helpful when writing integration
tests to make sure you only generate code coverage with unit tests.

Example 11.3. A test that specifies that no method should be covered

<?php
use PHPUnit\Framework\TestCase;

class GuestbookIntegrationTest extends PHPUnit_Extensions_Database_TestCase
{
 /**
 * @coversNothing
 */
 public function testAddEntry()
 {
 $guestbook = new Guestbook();
 $guestbook->addEntry("suzy", "Hello world!");

Code Coverage Analysis

81

 $queryTable = $this->getConnection()->createQueryTable(
 'guestbook', 'SELECT * FROM guestbook'
);

 $expectedTable = $this->createFlatXmlDataSet("expectedBook.xml")
 ->getTable("guestbook");

 $this->assertTablesEqual($expectedTable, $queryTable);
 }
}
?>

Edge Cases
This section shows noteworthy edge cases that lead to confusing code coverage information.

Example 11.4.

<?php
use PHPUnit\Framework\TestCase;

// Because it is "line based" and not statement base coverage
// one line will always have one coverage status
if (false) this_function_call_shows_up_as_covered();

// Due to how code coverage works internally these two lines are special.
// This line will show up as non executable
if (false)
 // This line will show up as covered because it is actually the
 // coverage of the if statement in the line above that gets shown here!
 will_also_show_up_as_covered();

// To avoid this it is necessary that braces are used
if (false) {
 this_call_will_never_show_up_as_covered();
}
?>

82

Chapter 12. Other Uses for Tests
Once you get used to writing automated tests, you will likely discover more uses for tests. Here are
some examples.

Agile Documentation
 Typically, in a project that is developed using an agile process, such as Extreme Programming, the
documentation cannot keep up with the frequent changes to the project's design and code. Extreme
Programming demands collective code ownership, so all developers need to know how the entire
system works. If you are disciplined enough to consequently use "speaking names" for your tests that
describe what a class should do, you can use PHPUnit's TestDox functionality to generate automated
documentation for your project based on its tests. This documentation gives developers an overview
of what each class of the project is supposed to do.

PHPUnit's TestDox functionality looks at a test class and all the test method names and converts them
from camel case PHP names to sentences: testBalanceIsInitiallyZero() becomes "Bal-
ance is initially zero". If there are several test methods whose names only differ in a suffix of one
or more digits, such as testBalanceCannotBecomeNegative() and testBalanceCan-
notBecomeNegative2(), the sentence "Balance cannot become negative" will appear only once,
assuming that all of these tests succeed.

Let us take a look at the agile documentation generated for a BankAccount class:

phpunit --testdox BankAccountTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

BankAccount
 [x] Balance is initially zero
 [x] Balance cannot become negative

Alternatively, the agile documentation can be generated in HTML or plain text format and written to
a file using the --testdox-html and --testdox-text arguments.

 Agile Documentation can be used to document the assumptions you make about the external packages
that you use in your project. When you use an external package, you are exposed to the risks that the
package will not behave as you expect, and that future versions of the package will change in subtle
ways that will break your code, without you knowing it. You can address these risks by writing a test
every time you make an assumption. If your test succeeds, your assumption is valid. If you document
all your assumptions with tests, future releases of the external package will be no cause for concern:
if the tests succeed, your system should continue working.

Cross-Team Tests
When you document assumptions with tests, you own the tests. The supplier of the package -- who you
make assumptions about -- knows nothing about your tests. If you want to have a closer relationship
with the supplier of a package, you can use the tests to communicate and coordinate your activities.

When you agree on coordinating your activities with the supplier of a package, you can write the
tests together. Do this in such a way that the tests reveal as many assumptions as possible. Hidden
assumptions are the death of cooperation. With the tests, you document exactly what you expect from
the supplied package. The supplier will know the package is complete when all the tests run.

 By using stubs (see the chapter on "Mock Objects", earlier in this book), you can further decouple
yourself from the supplier: The job of the supplier is to make the tests run with the real implementation
of the package. Your job is to make the tests run for your own code. Until such time as you have the

Other Uses for Tests

83

real implementation of the supplied package, you use stub objects. Following this approach, the two
teams can develop independently.

84

Chapter 13. Logging
 PHPUnit can produce several types of logfiles.

Test Results (XML)
The XML logfile for test results produced by PHPUnit is based upon the one used by the JUnit task for
Apache Ant [http://ant.apache.org/manual/Tasks/junit.html]. The following example shows the XML
logfile generated for the tests in ArrayTest:

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="ArrayTest"
 file="/home/sb/ArrayTest.php"
 tests="2"
 assertions="2"
 failures="0"
 errors="0"
 time="0.016030">
 <testcase name="testNewArrayIsEmpty"
 class="ArrayTest"
 file="/home/sb/ArrayTest.php"
 line="6"
 assertions="1"
 time="0.008044"/>
 <testcase name="testArrayContainsAnElement"
 class="ArrayTest"
 file="/home/sb/ArrayTest.php"
 line="15"
 assertions="1"
 time="0.007986"/>
 </testsuite>
</testsuites>

The following XML logfile was generated for two tests, testFailure and testError, of a test
case class named FailureErrorTest and shows how failures and errors are denoted.

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="FailureErrorTest"
 file="/home/sb/FailureErrorTest.php"
 tests="2"
 assertions="1"
 failures="1"
 errors="1"
 time="0.019744">
 <testcase name="testFailure"
 class="FailureErrorTest"
 file="/home/sb/FailureErrorTest.php"
 line="6"
 assertions="1"
 time="0.011456">
 <failure type="PHPUnit_Framework_ExpectationFailedException">
testFailure(FailureErrorTest)
Failed asserting that <integer:2> matches expected value <integer:1>.

/home/sb/FailureErrorTest.php:8
</failure>
 </testcase>
 <testcase name="testError"
 class="FailureErrorTest"

http://ant.apache.org/manual/Tasks/junit.html
http://ant.apache.org/manual/Tasks/junit.html
http://ant.apache.org/manual/Tasks/junit.html

Logging

85

 file="/home/sb/FailureErrorTest.php"
 line="11"
 assertions="0"
 time="0.008288">
 <error type="Exception">testError(FailureErrorTest)
Exception:

/home/sb/FailureErrorTest.php:13
</error>
 </testcase>
 </testsuite>
</testsuites>

Test Results (TAP)
The Test Anything Protocol (TAP) [http://testanything.org/] is Perl's simple text-based interface be-
tween testing modules. The following example shows the TAP logfile generated for the tests in Ar-
rayTest:

TAP version 13
ok 1 - testNewArrayIsEmpty(ArrayTest)
ok 2 - testArrayContainsAnElement(ArrayTest)
1..2

The following TAP logfile was generated for two tests, testFailure and testError, of a test
case class named FailureErrorTest and shows how failures and errors are denoted.

TAP version 13
not ok 1 - Failure: testFailure(FailureErrorTest)

 message: 'Failed asserting that <integer:2> matches expected value <integer:1>.'
 severity: fail
 data:
 got: 2
 expected: 1
 ...
not ok 2 - Error: testError(FailureErrorTest)
1..2

Test Results (JSON)
The JavaScript Object Notation (JSON) [http://www.json.org/] is a lightweight data-interchange for-
mat. The following example shows the JSON messages generated for the tests in ArrayTest:

{"event":"suiteStart","suite":"ArrayTest","tests":2}
{"event":"test","suite":"ArrayTest",
 "test":"testNewArrayIsEmpty(ArrayTest)","status":"pass",
 "time":0.000460147858,"trace":[],"message":""}
{"event":"test","suite":"ArrayTest",
 "test":"testArrayContainsAnElement(ArrayTest)","status":"pass",
 "time":0.000422954559,"trace":[],"message":""}

The following JSON messages were generated for two tests, testFailure and testError, of a
test case class named FailureErrorTest and show how failures and errors are denoted.

{"event":"suiteStart","suite":"FailureErrorTest","tests":2}
{"event":"test","suite":"FailureErrorTest",
 "test":"testFailure(FailureErrorTest)","status":"fail",
 "time":0.0082459449768066,"trace":[],
 "message":"Failed asserting that <integer:2> is equal to <integer:1>."}

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

Logging

86

{"event":"test","suite":"FailureErrorTest",
 "test":"testError(FailureErrorTest)","status":"error",
 "time":0.0083680152893066,"trace":[],"message":""}

Code Coverage (XML)
The XML format for code coverage information logging produced by PHPUnit is loosely based upon
the one used by Clover [http://www.atlassian.com/software/clover/]. The following example shows
the XML logfile generated for the tests in BankAccountTest:

<?xml version="1.0" encoding="UTF-8"?>
<coverage generated="1184835473" phpunit="3.6.0">
 <project name="BankAccountTest" timestamp="1184835473">
 <file name="/home/sb/BankAccount.php">
 <class name="BankAccountException">
 <metrics methods="0" coveredmethods="0" statements="0"
 coveredstatements="0" elements="0" coveredelements="0"/>
 </class>
 <class name="BankAccount">
 <metrics methods="4" coveredmethods="4" statements="13"
 coveredstatements="5" elements="17" coveredelements="9"/>
 </class>
 <line num="77" type="method" count="3"/>
 <line num="79" type="stmt" count="3"/>
 <line num="89" type="method" count="2"/>
 <line num="91" type="stmt" count="2"/>
 <line num="92" type="stmt" count="0"/>
 <line num="93" type="stmt" count="0"/>
 <line num="94" type="stmt" count="2"/>
 <line num="96" type="stmt" count="0"/>
 <line num="105" type="method" count="1"/>
 <line num="107" type="stmt" count="1"/>
 <line num="109" type="stmt" count="0"/>
 <line num="119" type="method" count="1"/>
 <line num="121" type="stmt" count="1"/>
 <line num="123" type="stmt" count="0"/>
 <metrics loc="126" ncloc="37" classes="2" methods="4" coveredmethods="4"
 statements="13" coveredstatements="5" elements="17"
 coveredelements="9"/>
 </file>
 <metrics files="1" loc="126" ncloc="37" classes="2" methods="4"
 coveredmethods="4" statements="13" coveredstatements="5"
 elements="17" coveredelements="9"/>
 </project>
</coverage>

Code Coverage (TEXT)
Human readable code coverage output for the command-line or a text file. The aim of this output
format is to provide a quick coverage overview while working on a small set of classes. For bigger
projects this output can be useful to get an quick overview of the projects coverage or when used with
the --filter functionality. When used from the command-line by writing to php://stdout
this will honor the --colors setting. Writing to standard out is the default option when used from
the command-line. By default this will only show files that have at least one covered line. This can
only be changed via the showUncoveredFiles xml configuration option. See the section called
“Logging”. By default all files and their coverage status are shown in the detailed report. This can be
changed via the showOnlySummary xml configuration option.

http://www.atlassian.com/software/clover/
http://www.atlassian.com/software/clover/

87

Chapter 14. Extending PHPUnit
PHPUnit can be extended in various ways to make the writing of tests easier and customize the feed-
back you get from running tests. Here are common starting points to extend PHPUnit.

Subclass phpunit\framework\TestCase
 Write custom assertions and utility methods in an abstract subclass of phpunit\frame-
work\TestCase and derive your test case classes from that class. This is one of the easiest ways
to extend PHPUnit.

Write custom assertions
When writing custom assertions it is the best practice to follow how PHPUnit's own assertions
are implemented. As you can see in Example 14.1, “The assertTrue() and isTrue() methods of
the PHPUnit_Framework_Assert class”, the assertTrue() method is just a wrapper around the
isTrue() and assertThat() methods: isTrue() creates a matcher object that is passed on
to assertThat() for evaluation.

Example 14.1. The assertTrue() and isTrue() methods of the
PHPUnit_Framework_Assert class

<?php
use PHPUnit\Framework\TestCase;

abstract class PHPUnit_Framework_Assert
{
 // ...

 /**
 * Asserts that a condition is true.
 *
 * @param boolean $condition
 * @param string $message
 * @throws PHPUnit_Framework_AssertionFailedError
 */
 public static function assertTrue($condition, $message = '')
 {
 self::assertThat($condition, self::isTrue(), $message);
 }

 // ...

 /**
 * Returns a PHPUnit_Framework_Constraint_IsTrue matcher object.
 *
 * @return PHPUnit_Framework_Constraint_IsTrue
 * @since Method available since Release 3.3.0
 */
 public static function isTrue()
 {
 return new PHPUnit_Framework_Constraint_IsTrue;
 }

 // ...
}?>

Extending PHPUnit

88

Example 14.2, “The PHPUnit_Framework_Constraint_IsTrue class” shows how
PHPUnit_Framework_Constraint_IsTrue extends the abstract base class for matcher ob-
jects (or constraints), PHPUnit_Framework_Constraint.

Example 14.2. The PHPUnit_Framework_Constraint_IsTrue class

<?php
use PHPUnit\Framework\TestCase;

class PHPUnit_Framework_Constraint_IsTrue extends PHPUnit_Framework_Constraint
{
 /**
 * Evaluates the constraint for parameter $other. Returns true if the
 * constraint is met, false otherwise.
 *
 * @param mixed $other Value or object to evaluate.
 * @return bool
 */
 public function matches($other)
 {
 return $other === true;
 }

 /**
 * Returns a string representation of the constraint.
 *
 * @return string
 */
 public function toString()
 {
 return 'is true';
 }
}?>

The effort of implementing the assertTrue() and isTrue() methods as well as the
PHPUnit_Framework_Constraint_IsTrue class yields the benefit that assertThat()
automatically takes care of evaluating the assertion and bookkeeping tasks such as counting it for sta-
tistics. Furthermore, the isTrue() method can be used as a matcher when configuring mock objects.

Implement PHPUnit_Framework_TestListener
 Example 14.3, “A simple test listener” shows a simple implementation of the
PHPUnit_Framework_TestListener interface.

Example 14.3. A simple test listener

<?php
use PHPUnit\Framework\TestCase;

class SimpleTestListener implements PHPUnit_Framework_TestListener
{
 public function addError(PHPUnit_Framework_Test $test, Exception $e, $time)
 {
 printf("Error while running test '%s'.\n", $test->getName());
 }

 public function addFailure(PHPUnit_Framework_Test $test, PHPUnit_Framework_AssertionFailedError $e, $time)
 {
 printf("Test '%s' failed.\n", $test->getName());
 }

Extending PHPUnit

89

 public function addIncompleteTest(PHPUnit_Framework_Test $test, Exception $e, $time)
 {
 printf("Test '%s' is incomplete.\n", $test->getName());
 }

 public function addRiskyTest(PHPUnit_Framework_Test $test, Exception $e, $time)
 {
 printf("Test '%s' is deemed risky.\n", $test->getName());
 }

 public function addSkippedTest(PHPUnit_Framework_Test $test, Exception $e, $time)
 {
 printf("Test '%s' has been skipped.\n", $test->getName());
 }

 public function startTest(PHPUnit_Framework_Test $test)
 {
 printf("Test '%s' started.\n", $test->getName());
 }

 public function endTest(PHPUnit_Framework_Test $test, $time)
 {
 printf("Test '%s' ended.\n", $test->getName());
 }

 public function startTestSuite(PHPUnit_Framework_TestSuite $suite)
 {
 printf("TestSuite '%s' started.\n", $suite->getName());
 }

 public function endTestSuite(PHPUnit_Framework_TestSuite $suite)
 {
 printf("TestSuite '%s' ended.\n", $suite->getName());
 }
}
?>

 Example 14.4, “Using base test listener” shows how to subclass the
PHPUnit_Framework_BaseTestListener abstract class, which lets you specify only the in-
terface methods that are interesting for your use case, while providing empty implementations for all
the others.

Example 14.4. Using base test listener

<?php
use PHPUnit\Framework\TestCase;

class ShortTestListener extends PHPUnit_Framework_BaseTestListener
{
 public function endTest(PHPUnit_Framework_Test $test, $time)
 {
 printf("Test '%s' ended.\n", $test->getName());
 }
}
?>

In the section called “Test Listeners” you can see how to configure PHPUnit to attach your test listener
to the test execution.

Extending PHPUnit

90

Subclass
PHPUnit_Extensions_TestDecorator

 You can wrap test cases or test suites in a subclass of PHPUnit_Extensions_TestDecorator
and use the Decorator design pattern to perform some actions before and after the test runs.

 PHPUnit ships with one concrete test decorator: PHPUnit_Extensions_RepeatedTest. It is
used to run a test repeatedly and only count it as a success if all iterations are successful.

Example 14.5, “The RepeatedTest Decorator” shows a cut-down version of the
PHPUnit_Extensions_RepeatedTest test decorator that illustrates how to write your own
test decorators.

Example 14.5. The RepeatedTest Decorator

<?php
use PHPUnit\Framework\TestCase;

require_once 'PHPUnit/Extensions/TestDecorator.php';

class PHPUnit_Extensions_RepeatedTest extends PHPUnit_Extensions_TestDecorator
{
 private $timesRepeat = 1;

 public function __construct(PHPUnit_Framework_Test $test, $timesRepeat = 1)
 {
 parent::__construct($test);

 if (is_integer($timesRepeat) &&
 $timesRepeat >= 0) {
 $this->timesRepeat = $timesRepeat;
 }
 }

 public function count()
 {
 return $this->timesRepeat * $this->test->count();
 }

 public function run(PHPUnit_Framework_TestResult $result = null)
 {
 if ($result === null) {
 $result = $this->createResult();
 }

 for ($i = 0; $i < $this->timesRepeat && !$result->shouldStop(); $i++) {
 $this->test->run($result);
 }

 return $result;
 }
}
?>

Implement PHPUnit_Framework_Test
 The PHPUnit_Framework_Test interface is narrow and easy to implement. You can write
an implementation of PHPUnit_Framework_Test that is simpler than phpunit\frame-
work\TestCase and that runs data-driven tests, for instance.

Extending PHPUnit

91

Example 14.6, “A data-driven test” shows a data-driven test case class that compares values from a
file with Comma-Separated Values (CSV). Each line of such a file looks like foo;bar, where the
first value is the one we expect and the second value is the actual one.

Example 14.6. A data-driven test

<?php
use PHPUnit\Framework\TestCase;

class DataDrivenTest implements PHPUnit_Framework_Test
{
 private $lines;

 public function __construct($dataFile)
 {
 $this->lines = file($dataFile);
 }

 public function count()
 {
 return 1;
 }

 public function run(PHPUnit_Framework_TestResult $result = null)
 {
 if ($result === null) {
 $result = new PHPUnit_Framework_TestResult;
 }

 foreach ($this->lines as $line) {
 $result->startTest($this);
 PHP_Timer::start();
 $stopTime = null;

 list($expected, $actual) = explode(';', $line);

 try {
 PHPUnit_Framework_Assert::assertEquals(
 trim($expected), trim($actual)
);
 }

 catch (PHPUnit_Framework_AssertionFailedError $e) {
 $stopTime = PHP_Timer::stop();
 $result->addFailure($this, $e, $stopTime);
 }

 catch (Exception $e) {
 $stopTime = PHP_Timer::stop();
 $result->addError($this, $e, $stopTime);
 }

 if ($stopTime === null) {
 $stopTime = PHP_Timer::stop();
 }

 $result->endTest($this, $stopTime);
 }

 return $result;
 }
}

Extending PHPUnit

92

$test = new DataDrivenTest('data_file.csv');
$result = PHPUnit_TextUI_TestRunner::run($test);
?>

PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

.F

Time: 0 seconds

There was 1 failure:

1) DataDrivenTest
Failed asserting that two strings are equal.
expected string <bar>
difference < x>
got string <baz>
/home/sb/DataDrivenTest.php:32
/home/sb/DataDrivenTest.php:53

FAILURES!
Tests: 2, Failures: 1.

93

Appendix A. Assertions
This appendix lists the various assertion methods that are available.

assertArrayHasKey()
assertArrayHasKey(mixed $key, array $array[, string $message = ''])

Reports an error identified by $message if $array does not have the $key.

assertArrayNotHasKey() is the inverse of this assertion and takes the same arguments.

Example A.1. Usage of assertArrayHasKey()

<?php
use PHPUnit\Framework\TestCase;

class ArrayHasKeyTest extends TestCase
{
 public function testFailure()
 {
 $this->assertArrayHasKey('foo', ['bar' => 'baz']);
 }
}
?>

phpunit ArrayHasKeyTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ArrayHasKeyTest::testFailure
Failed asserting that an array has the key 'foo'.

/home/sb/ArrayHasKeyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertClassHasAttribute()
assertClassHasAttribute(string $attributeName, string $className[,
string $message = ''])

Reports an error identified by $message if $className::attributeName does not exist.

assertClassNotHasAttribute() is the inverse of this assertion and takes the same argu-
ments.

Example A.2. Usage of assertClassHasAttribute()

<?php
use PHPUnit\Framework\TestCase;

Assertions

94

class ClassHasAttributeTest extends TestCase
{
 public function testFailure()
 {
 $this->assertClassHasAttribute('foo', stdClass::class);
 }
}
?>

phpunit ClassHasAttributeTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ClassHasAttributeTest::testFailure
Failed asserting that class "stdClass" has attribute "foo".

/home/sb/ClassHasAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertArraySubset()
assertArraySubset(array $subset, array $array[, bool $strict = '',
string $message = ''])

Reports an error identified by $message if $array does not contains the $subset.

$strict is a flag used to compare the identity of objects within arrays.

Example A.3. Usage of assertArraySubset()

<?php
use PHPUnit\Framework\TestCase;

class ArraySubsetTest extends TestCase
{
 public function testFailure()
 {
 $this->assertArraySubset(['config' => ['key-a', 'key-b']], ['config' => ['key-a']]);
 }
}
?>

phpunit ArrayHasKeyTest
PHPUnit 4.4.0 by Sebastian Bergmann.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) Epilog\EpilogTest::testNoFollowOption
Failed asserting that an array has the subset Array &0 (

Assertions

95

 'config' => Array &1 (
 0 => 'key-a'
 1 => 'key-b'
)
).

/home/sb/ArraySubsetTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertClassHasStaticAttribute()
assertClassHasStaticAttribute(string $attributeName, string $class-
Name[, string $message = ''])

Reports an error identified by $message if $className::attributeName does not exist.

assertClassNotHasStaticAttribute() is the inverse of this assertion and takes the same
arguments.

Example A.4. Usage of assertClassHasStaticAttribute()

<?php
use PHPUnit\Framework\TestCase;

class ClassHasStaticAttributeTest extends TestCase
{
 public function testFailure()
 {
 $this->assertClassHasStaticAttribute('foo', stdClass::class);
 }
}
?>

phpunit ClassHasStaticAttributeTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ClassHasStaticAttributeTest::testFailure
Failed asserting that class "stdClass" has static attribute "foo".

/home/sb/ClassHasStaticAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertContains()
assertContains(mixed $needle, Iterator|array $haystack[, string
$message = ''])

Reports an error identified by $message if $needle is not an element of $haystack.

assertNotContains() is the inverse of this assertion and takes the same arguments.

Assertions

96

assertAttributeContains() and assertAttributeNotContains() are convenience
wrappers that use a public, protected, or private attribute of a class or object as the haystack.

Example A.5. Usage of assertContains()

<?php
use PHPUnit\Framework\TestCase;

class ContainsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertContains(4, [1, 2, 3]);
 }
}
?>

phpunit ContainsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsTest::testFailure
Failed asserting that an array contains 4.

/home/sb/ContainsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertContains(string $needle, string $haystack[, string $message =
'', boolean $ignoreCase = false])

Reports an error identified by $message if $needle is not a substring of $haystack.

If $ignoreCase is true, the test will be case insensitive.

Example A.6. Usage of assertContains()

<?php
use PHPUnit\Framework\TestCase;

class ContainsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertContains('baz', 'foobar');
 }
}
?>

phpunit ContainsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

Assertions

97

There was 1 failure:

1) ContainsTest::testFailure
Failed asserting that 'foobar' contains "baz".

/home/sb/ContainsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Example A.7. Usage of assertContains() with $ignoreCase

<?php
use PHPUnit\Framework\TestCase;

class ContainsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertContains('foo', 'FooBar');
 }

 public function testOK()
 {
 $this->assertContains('foo', 'FooBar', '', true);
 }
}
?>

phpunit ContainsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F.

Time: 0 seconds, Memory: 2.75Mb

There was 1 failure:

1) ContainsTest::testFailure
Failed asserting that 'FooBar' contains "foo".

/home/sb/ContainsTest.php:6

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

assertContainsOnly()
assertContainsOnly(string $type, Iterator|array $haystack[, boolean
$isNativeType = null, string $message = ''])

Reports an error identified by $message if $haystack does not contain only variables of type
$type.

$isNativeType is a flag used to indicate whether $type is a native PHP type or not.

assertNotContainsOnly() is the inverse of this assertion and takes the same arguments.

assertAttributeContainsOnly() and assertAttributeNotContainsOnly() are
convenience wrappers that use a public, protected, or private attribute of a class or object
as the haystack.

Assertions

98

Example A.8. Usage of assertContainsOnly()

<?php
use PHPUnit\Framework\TestCase;

class ContainsOnlyTest extends TestCase
{
 public function testFailure()
 {
 $this->assertContainsOnly('string', ['1', '2', 3]);
 }
}
?>

phpunit ContainsOnlyTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsOnlyTest::testFailure
Failed asserting that Array (
 0 => '1'
 1 => '2'
 2 => 3
) contains only values of type "string".

/home/sb/ContainsOnlyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertContainsOnlyInstancesOf()
assertContainsOnlyInstancesOf(string $classname, Traversable|array
$haystack[, string $message = ''])

Reports an error identified by $message if $haystack does not contain only instances of class
$classname.

Example A.9. Usage of assertContainsOnlyInstancesOf()

<?php
use PHPUnit\Framework\TestCase;

class ContainsOnlyInstancesOfTest extends TestCase
{
 public function testFailure()
 {
 $this->assertContainsOnlyInstancesOf(
 Foo::class,
 [new Foo, new Bar, new Foo]
);
 }
}
?>

phpunit ContainsOnlyInstancesOfTest

Assertions

99

PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsOnlyInstancesOfTest::testFailure
Failed asserting that Array ([0]=> Bar Object(...)) is an instance of class "Foo".

/home/sb/ContainsOnlyInstancesOfTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertCount()
assertCount($expectedCount, $haystack[, string $message = ''])

Reports an error identified by $message if the number of elements in $haystack is not $ex-
pectedCount.

assertNotCount() is the inverse of this assertion and takes the same arguments.

Example A.10. Usage of assertCount()

<?php
use PHPUnit\Framework\TestCase;

class CountTest extends TestCase
{
 public function testFailure()
 {
 $this->assertCount(0, ['foo']);
 }
}
?>

phpunit CountTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) CountTest::testFailure
Failed asserting that actual size 1 matches expected size 0.

/home/sb/CountTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEmpty()
assertEmpty(mixed $actual[, string $message = ''])

Reports an error identified by $message if $actual is not empty.

Assertions

100

assertNotEmpty() is the inverse of this assertion and takes the same arguments.

assertAttributeEmpty() and assertAttributeNotEmpty() are convenience wrap-
pers that can be applied to a public, protected, or private attribute of a class or object.

Example A.11. Usage of assertEmpty()

<?php
use PHPUnit\Framework\TestCase;

class EmptyTest extends TestCase
{
 public function testFailure()
 {
 $this->assertEmpty(['foo']);
 }
}
?>

phpunit EmptyTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) EmptyTest::testFailure
Failed asserting that an array is empty.

/home/sb/EmptyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEqualXMLStructure()
assertEqualXMLStructure(DOMElement $expectedElement, DOMElement $ac-
tualElement[, boolean $checkAttributes = false, string $message =
''])

Reports an error identified by $message if the XML Structure of the DOMElement in $ac-
tualElement is not equal to the XML structure of the DOMElement in $expectedElement.

Example A.12. Usage of assertEqualXMLStructure()

<?php
use PHPUnit\Framework\TestCase;

class EqualXMLStructureTest extends TestCase
{
 public function testFailureWithDifferentNodeNames()
 {
 $expected = new DOMElement('foo');
 $actual = new DOMElement('bar');

 $this->assertEqualXMLStructure($expected, $actual);
 }

 public function testFailureWithDifferentNodeAttributes()

Assertions

101

 {
 $expected = new DOMDocument;
 $expected->loadXML('<foo bar="true" />');

 $actual = new DOMDocument;
 $actual->loadXML('<foo/>');

 $this->assertEqualXMLStructure(
 $expected->firstChild, $actual->firstChild, true
);
 }

 public function testFailureWithDifferentChildrenCount()
 {
 $expected = new DOMDocument;
 $expected->loadXML('<foo><bar/><bar/><bar/></foo>');

 $actual = new DOMDocument;
 $actual->loadXML('<foo><bar/></foo>');

 $this->assertEqualXMLStructure(
 $expected->firstChild, $actual->firstChild
);
 }

 public function testFailureWithDifferentChildren()
 {
 $expected = new DOMDocument;
 $expected->loadXML('<foo><bar/><bar/><bar/></foo>');

 $actual = new DOMDocument;
 $actual->loadXML('<foo><baz/><baz/><baz/></foo>');

 $this->assertEqualXMLStructure(
 $expected->firstChild, $actual->firstChild
);
 }
}
?>

phpunit EqualXMLStructureTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

FFFF

Time: 0 seconds, Memory: 5.75Mb

There were 4 failures:

1) EqualXMLStructureTest::testFailureWithDifferentNodeNames
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'foo'
+'bar'

/home/sb/EqualXMLStructureTest.php:9

2) EqualXMLStructureTest::testFailureWithDifferentNodeAttributes
Number of attributes on node "foo" does not match
Failed asserting that 0 matches expected 1.

/home/sb/EqualXMLStructureTest.php:22

Assertions

102

3) EqualXMLStructureTest::testFailureWithDifferentChildrenCount
Number of child nodes of "foo" differs
Failed asserting that 1 matches expected 3.

/home/sb/EqualXMLStructureTest.php:35

4) EqualXMLStructureTest::testFailureWithDifferentChildren
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

/home/sb/EqualXMLStructureTest.php:48

FAILURES!
Tests: 4, Assertions: 8, Failures: 4.

assertEquals()
assertEquals(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual are not
equal.

assertNotEquals() is the inverse of this assertion and takes the same arguments.

assertAttributeEquals() and assertAttributeNotEquals() are convenience wrap-
pers that use a public, protected, or private attribute of a class or object as the actual value.

Example A.13. Usage of assertEquals()

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertEquals(1, 0);
 }

 public function testFailure2()
 {
 $this->assertEquals('bar', 'baz');
 }

 public function testFailure3()
 {
 $this->assertEquals("foo\nbar\nbaz\n", "foo\nbah\nbaz\n");
 }
}
?>

phpunit EqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

FFF

Time: 0 seconds, Memory: 5.25Mb

Assertions

103

There were 3 failures:

1) EqualsTest::testFailure
Failed asserting that 0 matches expected 1.

/home/sb/EqualsTest.php:6

2) EqualsTest::testFailure2
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

/home/sb/EqualsTest.php:11

3) EqualsTest::testFailure3
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
 'foo
-bar
+bah
 baz
 '

/home/sb/EqualsTest.php:16

FAILURES!
Tests: 3, Assertions: 3, Failures: 3.

More specialized comparisons are used for specific argument types for $expected and $actual,
see below.

assertEquals(float $expected, float $actual[, string $message = '',
float $delta = 0])

Reports an error identified by $message if the two floats $expected and $actual are not within
$delta of each other.

Please read "What Every Computer Scientist Should Know About Floating-Point Arithmetic [http://
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html]" to understand why $delta is necces-
sary.

Example A.14. Usage of assertEquals() with floats

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{
 public function testSuccess()
 {
 $this->assertEquals(1.0, 1.1, '', 0.2);
 }

 public function testFailure()
 {
 $this->assertEquals(1.0, 1.1);
 }

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Assertions

104

}
?>

phpunit EqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

.F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that 1.1 matches expected 1.0.

/home/sb/EqualsTest.php:11

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

assertEquals(DOMDocument $expected, DOMDocument $actual[, string
$message = ''])

Reports an error identified by $message if the uncommented canonical form of the XML documents
represented by the two DOMDocument objects $expected and $actual are not equal.

Example A.15. Usage of assertEquals() with DOMDocument objects

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{
 public function testFailure()
 {
 $expected = new DOMDocument;
 $expected->loadXML('<foo><bar/></foo>');

 $actual = new DOMDocument;
 $actual->loadXML('<bar><foo/></bar>');

 $this->assertEquals($expected, $actual);
 }
}
?>

phpunit EqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
 <?xml version="1.0"?>
-<foo>
- <bar/>

Assertions

105

-</foo>
+<bar>
+ <foo/>
+</bar>

/home/sb/EqualsTest.php:12

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEquals(object $expected, object $actual[, string $message =
''])

Reports an error identified by $message if the two objects $expected and $actual do not have
equal attribute values.

Example A.16. Usage of assertEquals() with objects

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{
 public function testFailure()
 {
 $expected = new stdClass;
 $expected->foo = 'foo';
 $expected->bar = 'bar';

 $actual = new stdClass;
 $actual->foo = 'bar';
 $actual->baz = 'bar';

 $this->assertEquals($expected, $actual);
 }
}
?>

phpunit EqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two objects are equal.
--- Expected
+++ Actual
@@ @@
 stdClass Object (
- 'foo' => 'foo'
- 'bar' => 'bar'
+ 'foo' => 'bar'
+ 'baz' => 'bar'
)

/home/sb/EqualsTest.php:14

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Assertions

106

assertEquals(array $expected, array $actual[, string $message = ''])

Reports an error identified by $message if the two arrays $expected and $actual are not equal.

Example A.17. Usage of assertEquals() with arrays

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertEquals(['a', 'b', 'c'], ['a', 'c', 'd']);
 }
}
?>

phpunit EqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
 Array (
 0 => 'a'
- 1 => 'b'
- 2 => 'c'
+ 1 => 'c'
+ 2 => 'd'
)

/home/sb/EqualsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertFalse()
assertFalse(bool $condition[, string $message = ''])

Reports an error identified by $message if $condition is true.

assertNotFalse() is the inverse of this assertion and takes the same arguments.

Example A.18. Usage of assertFalse()

<?php
use PHPUnit\Framework\TestCase;

class FalseTest extends TestCase
{
 public function testFailure()
 {

Assertions

107

 $this->assertFalse(true);
 }
}
?>

phpunit FalseTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) FalseTest::testFailure
Failed asserting that true is false.

/home/sb/FalseTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertFileEquals()
assertFileEquals(string $expected, string $actual[, string $message
= ''])

Reports an error identified by $message if the file specified by $expected does not have the same
contents as the file specified by $actual.

assertFileNotEquals() is the inverse of this assertion and takes the same arguments.

Example A.19. Usage of assertFileEquals()

<?php
use PHPUnit\Framework\TestCase;

class FileEqualsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertFileEquals('/home/sb/expected', '/home/sb/actual');
 }
}
?>

phpunit FileEqualsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) FileEqualsTest::testFailure
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'expected
+'actual

Assertions

108

 '

/home/sb/FileEqualsTest.php:6

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

assertFileExists()
assertFileExists(string $filename[, string $message = ''])

Reports an error identified by $message if the file specified by $filename does not exist.

assertFileNotExists() is the inverse of this assertion and takes the same arguments.

Example A.20. Usage of assertFileExists()

<?php
use PHPUnit\Framework\TestCase;

class FileExistsTest extends TestCase
{
 public function testFailure()
 {
 $this->assertFileExists('/path/to/file');
 }
}
?>

phpunit FileExistsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) FileExistsTest::testFailure
Failed asserting that file "/path/to/file" exists.

/home/sb/FileExistsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertGreaterThan()
assertGreaterThan(mixed $expected, mixed $actual[, string $message
= ''])

Reports an error identified by $message if the value of $actual is not greater than the value of
$expected.

assertAttributeGreaterThan() is a convenience wrapper that uses a public, protect-
ed, or private attribute of a class or object as the actual value.

Example A.21. Usage of assertGreaterThan()

<?php

Assertions

109

use PHPUnit\Framework\TestCase;

class GreaterThanTest extends TestCase
{
 public function testFailure()
 {
 $this->assertGreaterThan(2, 1);
 }
}
?>

phpunit GreaterThanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) GreaterThanTest::testFailure
Failed asserting that 1 is greater than 2.

/home/sb/GreaterThanTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertGreaterThanOrEqual()
assertGreaterThanOrEqual(mixed $expected, mixed $actual[, string
$message = ''])

Reports an error identified by $message if the value of $actual is not greater than or equal to
the value of $expected.

assertAttributeGreaterThanOrEqual() is a convenience wrapper that uses a public,
protected, or private attribute of a class or object as the actual value.

Example A.22. Usage of assertGreaterThanOrEqual()

<?php
use PHPUnit\Framework\TestCase;

class GreatThanOrEqualTest extends TestCase
{
 public function testFailure()
 {
 $this->assertGreaterThanOrEqual(2, 1);
 }
}
?>

phpunit GreaterThanOrEqualTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

Assertions

110

1) GreatThanOrEqualTest::testFailure
Failed asserting that 1 is equal to 2 or is greater than 2.

/home/sb/GreaterThanOrEqualTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

assertInfinite()
assertInfinite(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not INF.

assertFinite() is the inverse of this assertion and takes the same arguments.

Example A.23. Usage of assertInfinite()

<?php
use PHPUnit\Framework\TestCase;

class InfiniteTest extends TestCase
{
 public function testFailure()
 {
 $this->assertInfinite(1);
 }
}
?>

phpunit InfiniteTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) InfiniteTest::testFailure
Failed asserting that 1 is infinite.

/home/sb/InfiniteTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertInstanceOf()
assertInstanceOf($expected, $actual[, $message = ''])

Reports an error identified by $message if $actual is not an instance of $expected.

assertNotInstanceOf() is the inverse of this assertion and takes the same arguments.

assertAttributeInstanceOf() and assertAttributeNotInstanceOf() are conve-
nience wrappers that can be applied to a public, protected, or private attribute of a class
or object.

Assertions

111

Example A.24. Usage of assertInstanceOf()

<?php
use PHPUnit\Framework\TestCase;

class InstanceOfTest extends TestCase
{
 public function testFailure()
 {
 $this->assertInstanceOf(RuntimeException::class, new Exception);
 }
}
?>

phpunit InstanceOfTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) InstanceOfTest::testFailure
Failed asserting that Exception Object (...) is an instance of class "RuntimeException".

/home/sb/InstanceOfTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertInternalType()
assertInternalType($expected, $actual[, $message = ''])

Reports an error identified by $message if $actual is not of the $expected type.

assertNotInternalType() is the inverse of this assertion and takes the same arguments.

assertAttributeInternalType() and assertAttributeNotInternalType() are
convenience wrappers that can be applied to a public, protected, or private attribute of a
class or object.

Example A.25. Usage of assertInternalType()

<?php
use PHPUnit\Framework\TestCase;

class InternalTypeTest extends TestCase
{
 public function testFailure()
 {
 $this->assertInternalType('string', 42);
 }
}
?>

phpunit InternalTypeTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Assertions

112

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) InternalTypeTest::testFailure
Failed asserting that 42 is of type "string".

/home/sb/InternalTypeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertJsonFileEqualsJsonFile()
assertJsonFileEqualsJsonFile(mixed $expectedFile, mixed $actual-
File[, string $message = ''])

Reports an error identified by $message if the value of $actualFile does not match the value
of $expectedFile.

Example A.26. Usage of assertJsonFileEqualsJsonFile()

<?php
use PHPUnit\Framework\TestCase;

class JsonFileEqualsJsonFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertJsonFileEqualsJsonFile(
 'path/to/fixture/file', 'path/to/actual/file');
 }
}
?>

phpunit JsonFileEqualsJsonFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonFileEqualsJsonFile::testFailure
Failed asserting that '{"Mascott":"Tux"}' matches JSON string "["Mascott", "Tux", "OS", "Linux"]".

/home/sb/JsonFileEqualsJsonFileTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStringEqualsJsonFile()
assertJsonStringEqualsJsonFile(mixed $expectedFile, mixed $actualJ-
son[, string $message = ''])

Reports an error identified by $message if the value of $actualJson does not match the value
of $expectedFile.

Assertions

113

Example A.27. Usage of assertJsonStringEqualsJsonFile()

<?php
use PHPUnit\Framework\TestCase;

class JsonStringEqualsJsonFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertJsonStringEqualsJsonFile(
 'path/to/fixture/file', json_encode(['Mascott' => 'ux'])
);
 }
}
?>

phpunit JsonStringEqualsJsonFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonStringEqualsJsonFile::testFailure
Failed asserting that '{"Mascott":"ux"}' matches JSON string "{"Mascott":"Tux"}".

/home/sb/JsonStringEqualsJsonFileTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStringEqualsJsonString()
assertJsonStringEqualsJsonString(mixed $expectedJson, mixed $actu-
alJson[, string $message = ''])

Reports an error identified by $message if the value of $actualJson does not match the value
of $expectedJson.

Example A.28. Usage of assertJsonStringEqualsJsonString()

<?php
use PHPUnit\Framework\TestCase;

class JsonStringEqualsJsonStringTest extends TestCase
{
 public function testFailure()
 {
 $this->assertJsonStringEqualsJsonString(
 json_encode(['Mascott' => 'Tux']),
 json_encode(['Mascott' => 'ux'])
);
 }
}
?>

phpunit JsonStringEqualsJsonStringTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

Assertions

114

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonStringEqualsJsonStringTest::testFailure
Failed asserting that two objects are equal.
--- Expected
+++ Actual
@@ @@
 stdClass Object (
 - 'Mascott' => 'Tux'
 + 'Mascott' => 'ux'
)

/home/sb/JsonStringEqualsJsonStringTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

assertLessThan()
assertLessThan(mixed $expected, mixed $actual[, string $message =
''])

Reports an error identified by $message if the value of $actual is not less than the value of
$expected.

assertAttributeLessThan() is a convenience wrapper that uses a public, protected,
or private attribute of a class or object as the actual value.

Example A.29. Usage of assertLessThan()

<?php
use PHPUnit\Framework\TestCase;

class LessThanTest extends TestCase
{
 public function testFailure()
 {
 $this->assertLessThan(1, 2);
 }
}
?>

phpunit LessThanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) LessThanTest::testFailure
Failed asserting that 2 is less than 1.

/home/sb/LessThanTest.php:6

Assertions

115

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertLessThanOrEqual()
assertLessThanOrEqual(mixed $expected, mixed $actual[, string $mes-
sage = ''])

Reports an error identified by $message if the value of $actual is not less than or equal to the
value of $expected.

assertAttributeLessThanOrEqual() is a convenience wrapper that uses a public, pro-
tected, or private attribute of a class or object as the actual value.

Example A.30. Usage of assertLessThanOrEqual()

<?php
use PHPUnit\Framework\TestCase;

class LessThanOrEqualTest extends TestCase
{
 public function testFailure()
 {
 $this->assertLessThanOrEqual(1, 2);
 }
}
?>

phpunit LessThanOrEqualTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) LessThanOrEqualTest::testFailure
Failed asserting that 2 is equal to 1 or is less than 1.

/home/sb/LessThanOrEqualTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

assertNan()
assertNan(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not NAN.

Example A.31. Usage of assertNan()

<?php
use PHPUnit\Framework\TestCase;

class NanTest extends TestCase
{
 public function testFailure()

Assertions

116

 {
 $this->assertNan(1);
 }
}
?>

phpunit NanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) NanTest::testFailure
Failed asserting that 1 is nan.

/home/sb/NanTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertNull()
assertNull(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not null.

assertNotNull() is the inverse of this assertion and takes the same arguments.

Example A.32. Usage of assertNull()

<?php
use PHPUnit\Framework\TestCase;

class NullTest extends TestCase
{
 public function testFailure()
 {
 $this->assertNull('foo');
 }
}
?>

phpunit NotNullTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) NullTest::testFailure
Failed asserting that 'foo' is null.

/home/sb/NotNullTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Assertions

117

assertObjectHasAttribute()
assertObjectHasAttribute(string $attributeName, object $object[,
string $message = ''])

Reports an error identified by $message if $object->attributeName does not exist.

assertObjectNotHasAttribute() is the inverse of this assertion and takes the same argu-
ments.

Example A.33. Usage of assertObjectHasAttribute()

<?php
use PHPUnit\Framework\TestCase;

class ObjectHasAttributeTest extends TestCase
{
 public function testFailure()
 {
 $this->assertObjectHasAttribute('foo', new stdClass);
 }
}
?>

phpunit ObjectHasAttributeTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ObjectHasAttributeTest::testFailure
Failed asserting that object of class "stdClass" has attribute "foo".

/home/sb/ObjectHasAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertRegExp()
assertRegExp(string $pattern, string $string[, string $message = ''])

Reports an error identified by $message if $string does not match the regular expression $pat-
tern.

assertNotRegExp() is the inverse of this assertion and takes the same arguments.

Example A.34. Usage of assertRegExp()

<?php
use PHPUnit\Framework\TestCase;

class RegExpTest extends TestCase
{
 public function testFailure()
 {
 $this->assertRegExp('/foo/', 'bar');

Assertions

118

 }
}
?>

phpunit RegExpTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) RegExpTest::testFailure
Failed asserting that 'bar' matches PCRE pattern "/foo/".

/home/sb/RegExpTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertStringMatchesFormat()
assertStringMatchesFormat(string $format, string $string[, string
$message = ''])

Reports an error identified by $message if the $string does not match the $format string.

assertStringNotMatchesFormat() is the inverse of this assertion and takes the same argu-
ments.

Example A.35. Usage of assertStringMatchesFormat()

<?php
use PHPUnit\Framework\TestCase;

class StringMatchesFormatTest extends TestCase
{
 public function testFailure()
 {
 $this->assertStringMatchesFormat('%i', 'foo');
 }
}
?>

phpunit StringMatchesFormatTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringMatchesFormatTest::testFailure
Failed asserting that 'foo' matches PCRE pattern "/^[+-]?\d+$/s".

/home/sb/StringMatchesFormatTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Assertions

119

The format string may contain the following placeholders:

• %e: Represents a directory separator, for example / on Linux.

• %s: One or more of anything (character or white space) except the end of line character.

• %S: Zero or more of anything (character or white space) except the end of line character.

• %a: One or more of anything (character or white space) including the end of line character.

• %A: Zero or more of anything (character or white space) including the end of line character.

• %w: Zero or more white space characters.

• %i: A signed integer value, for example +3142, -3142.

• %d: An unsigned integer value, for example 123456.

• %x: One or more hexadecimal character. That is, characters in the range 0-9, a-f, A-F.

• %f: A floating point number, for example: 3.142, -3.142, 3.142E-10, 3.142e+10.

• %c: A single character of any sort.

assertStringMatchesFormatFile()
assertStringMatchesFormatFile(string $formatFile, string $string[,
string $message = ''])

Reports an error identified by $message if the $string does not match the contents of the $for-
matFile.

assertStringNotMatchesFormatFile() is the inverse of this assertion and takes the same
arguments.

Example A.36. Usage of assertStringMatchesFormatFile()

<?php
use PHPUnit\Framework\TestCase;

class StringMatchesFormatFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertStringMatchesFormatFile('/path/to/expected.txt', 'foo');
 }
}
?>

phpunit StringMatchesFormatFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringMatchesFormatFileTest::testFailure
Failed asserting that 'foo' matches PCRE pattern "/^[+-]?\d+
$/s".

/home/sb/StringMatchesFormatFileTest.php:6

Assertions

120

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

assertSame()
assertSame(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual do not
have the same type and value.

assertNotSame() is the inverse of this assertion and takes the same arguments.

assertAttributeSame() and assertAttributeNotSame() are convenience wrappers
that use a public, protected, or private attribute of a class or object as the actual value.

Example A.37. Usage of assertSame()

<?php
use PHPUnit\Framework\TestCase;

class SameTest extends TestCase
{
 public function testFailure()
 {
 $this->assertSame('2204', 2204);
 }
}
?>

phpunit SameTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) SameTest::testFailure
Failed asserting that 2204 is identical to '2204'.

/home/sb/SameTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertSame(object $expected, object $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual do not
reference the same object.

Example A.38. Usage of assertSame() with objects

<?php
use PHPUnit\Framework\TestCase;

class SameTest extends TestCase
{
 public function testFailure()
 {

Assertions

121

 $this->assertSame(new stdClass, new stdClass);
 }
}
?>

phpunit SameTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) SameTest::testFailure
Failed asserting that two variables reference the same object.

/home/sb/SameTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertStringEndsWith()
assertStringEndsWith(string $suffix, string $string[, string $mes-
sage = ''])

Reports an error identified by $message if the $string does not end with $suffix.

assertStringEndsNotWith() is the inverse of this assertion and takes the same arguments.

Example A.39. Usage of assertStringEndsWith()

<?php
use PHPUnit\Framework\TestCase;

class StringEndsWithTest extends TestCase
{
 public function testFailure()
 {
 $this->assertStringEndsWith('suffix', 'foo');
 }
}
?>

phpunit StringEndsWithTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 1 second, Memory: 5.00Mb

There was 1 failure:

1) StringEndsWithTest::testFailure
Failed asserting that 'foo' ends with "suffix".

/home/sb/StringEndsWithTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Assertions

122

assertStringEqualsFile()
assertStringEqualsFile(string $expectedFile, string $actualString[,
string $message = ''])

Reports an error identified by $message if the file specified by $expectedFile does not have
$actualString as its contents.

assertStringNotEqualsFile() is the inverse of this assertion and takes the same arguments.

Example A.40. Usage of assertStringEqualsFile()

<?php
use PHPUnit\Framework\TestCase;

class StringEqualsFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertStringEqualsFile('/home/sb/expected', 'actual');
 }
}
?>

phpunit StringEqualsFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) StringEqualsFileTest::testFailure
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'expected
-'
+'actual'

/home/sb/StringEqualsFileTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

assertStringStartsWith()
assertStringStartsWith(string $prefix, string $string[, string $mes-
sage = ''])

Reports an error identified by $message if the $string does not start with $prefix.

assertStringStartsNotWith() is the inverse of this assertion and takes the same arguments.

Example A.41. Usage of assertStringStartsWith()

<?php

Assertions

123

use PHPUnit\Framework\TestCase;

class StringStartsWithTest extends TestCase
{
 public function testFailure()
 {
 $this->assertStringStartsWith('prefix', 'foo');
 }
}
?>

phpunit StringStartsWithTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringStartsWithTest::testFailure
Failed asserting that 'foo' starts with "prefix".

/home/sb/StringStartsWithTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertThat()
More complex assertions can be formulated using the PHPUnit_Framework_Constraint class-
es. They can be evaluated using the assertThat() method. Example A.42, “Usage of assertThat()”
shows how the logicalNot() and equalTo() constraints can be used to express the same as-
sertion as assertNotEquals().

assertThat(mixed $value, PHPUnit_Framework_Constraint $constraint[,
$message = ''])

Reports an error identified by $message if the $value does not match the $constraint.

Example A.42. Usage of assertThat()

<?php
use PHPUnit\Framework\TestCase;

class BiscuitTest extends TestCase
{
 public function testEquals()
 {
 $theBiscuit = new Biscuit('Ginger');
 $myBiscuit = new Biscuit('Ginger');

 $this->assertThat(
 $theBiscuit,
 $this->logicalNot(
 $this->equalTo($myBiscuit)
)
);
 }
}
?>

Assertions

124

Table A.1, “Constraints” shows the available PHPUnit_Framework_Constraint classes.

Table A.1. Constraints

Constraint Meaning

PHPUnit_ Framework_ Constraint_
Attribute attribute(PHPUnit_
Framework_ Constraint $con-
straint, $attributeName)

Constraint that applies another constraint to an
attribute of a class or an object.

PHPUnit_ Framework_ Constraint_
IsAnything anything()

Constraint that accepts any input value.

PHPUnit_ Framework_ Constraint_
ArrayHasKey arrayHasKey(mixed
$key)

Constraint that asserts that the array it is evaluat-
ed for has a given key.

PHPUnit_ Framework_ Con-
straint_ TraversableContains
contains(mixed $value)

Constraint that asserts that the array or object
that implements the Iterator interface it is
evaluated for contains a given value.

PHPUnit_ Framework_ Con-
straint_ TraversableContainsOnly
containsOnly(string $type)

Constraint that asserts that the array or ob-
ject that implements the Iterator interface it
is evaluated for contains only values of a given
type.

PHPUnit_ Framework_ Con-
straint_ TraversableContainsOnly
containsOnlyInstancesOf(string
$classname)

Constraint that asserts that the array or object
that implements the Iterator interface it is
evaluated for contains only instances of a given
classname.

PHPUnit_ Framework_ Constraint_
IsEqual equalTo($value, $delta =
0, $maxDepth = 10)

Constraint that checks if one value is equal to
another.

PHPUnit_ Framework_
Constraint_ Attribute
attributeEqualTo($attributeName,
$value, $delta = 0, $maxDepth =
10)

Constraint that checks if a value is equal to an
attribute of a class or of an object.

PHPUnit_ Framework_ Constraint_
FileExists fileExists()

Constraint that checks if the file(name) that it is
evaluated for exists.

PHPUnit_ Framework_ Constraint_
GreaterThan greaterThan(mixed
$value)

Constraint that asserts that the value it is evaluat-
ed for is greater than a given value.

PHPUnit_ Framework_ Constraint_
Or greaterThanOrEqual(mixed
$value)

Constraint that asserts that the value it is evaluat-
ed for is greater than or equal to a given value.

PHPUnit_ Framework_ Con-
straint_ ClassHasAttribute
classHasAttribute(string $at-
tributeName)

Constraint that asserts that the class it is evaluat-
ed for has a given attribute.

PHPUnit_ Framework_ Con-
straint_ ClassHasStaticAttribute
classHasStaticAttribute(string
$attributeName)

Constraint that asserts that the class it is evaluat-
ed for has a given static attribute.

PHPUnit_ Framework_ Con-
straint_ ObjectHasAttribute
hasAttribute(string $attribute-
Name)

Constraint that asserts that the object it is evalu-
ated for has a given attribute.

Assertions

125

Constraint Meaning

PHPUnit_ Framework_ Constraint_
IsIdentical identicalTo(mixed
$value)

Constraint that asserts that one value is identical
to another.

PHPUnit_ Framework_ Constraint_
IsFalse isFalse()

Constraint that asserts that the value it is evaluat-
ed is false.

PHPUnit_ Framework_ Constraint_
IsInstanceOf isInstanceOf(string
$className)

Constraint that asserts that the object it is evalu-
ated for is an instance of a given class.

PHPUnit_ Framework_ Constraint_
IsNull isNull()

Constraint that asserts that the value it is evaluat-
ed is null.

PHPUnit_ Framework_ Constraint_
IsTrue isTrue()

Constraint that asserts that the value it is evaluat-
ed is true.

PHPUnit_ Framework_ Constraint_
IsType isType(string $type)

Constraint that asserts that the value it is evaluat-
ed for is of a specified type.

PHPUnit_ Framework_ Constraint_
LessThan lessThan(mixed $value)

Constraint that asserts that the value it is evaluat-
ed for is smaller than a given value.

PHPUnit_ Framework_ Constraint_
Or lessThanOrEqual(mixed $value)

Constraint that asserts that the value it is evaluat-
ed for is smaller than or equal to a given value.

logicalAnd() Logical AND.

logicalNot(PHPUnit_ Framework_
Constraint $constraint)

Logical NOT.

logicalOr() Logical OR.

logicalXor() Logical XOR.

PHPUnit_ Framework_
Constraint_ PCREMatch
matchesRegularExpression(string
$pattern)

Constraint that asserts that the string it is evalu-
ated for matches a regular expression.

PHPUnit_ Framework_ Con-
straint_ StringContains
stringContains(string $string,
bool $case)

Constraint that asserts that the string it is evalu-
ated for contains a given string.

PHPUnit_ Framework_ Con-
straint_ StringEndsWith
stringEndsWith(string $suffix)

Constraint that asserts that the string it is evalu-
ated for ends with a given suffix.

PHPUnit_ Framework_ Con-
straint_ StringStartsWith
stringStartsWith(string $prefix)

Constraint that asserts that the string it is evalu-
ated for starts with a given prefix.

assertTrue()
assertTrue(bool $condition[, string $message = ''])

Reports an error identified by $message if $condition is false.

assertNotTrue() is the inverse of this assertion and takes the same arguments.

Example A.43. Usage of assertTrue()

<?php
use PHPUnit\Framework\TestCase;

Assertions

126

class TrueTest extends TestCase
{
 public function testFailure()
 {
 $this->assertTrue(false);
 }
}
?>

phpunit TrueTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) TrueTest::testFailure
Failed asserting that false is true.

/home/sb/TrueTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertXmlFileEqualsXmlFile()
assertXmlFileEqualsXmlFile(string $expectedFile, string $actual-
File[, string $message = ''])

Reports an error identified by $message if the XML document in $actualFile is not equal to
the XML document in $expectedFile.

assertXmlFileNotEqualsXmlFile() is the inverse of this assertion and takes the same ar-
guments.

Example A.44. Usage of assertXmlFileEqualsXmlFile()

<?php
use PHPUnit\Framework\TestCase;

class XmlFileEqualsXmlFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertXmlFileEqualsXmlFile(
 '/home/sb/expected.xml', '/home/sb/actual.xml');
 }
}
?>

phpunit XmlFileEqualsXmlFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

Assertions

127

1) XmlFileEqualsXmlFileTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
 <?xml version="1.0"?>
 <foo>
- <bar/>
+ <baz/>
 </foo>

/home/sb/XmlFileEqualsXmlFileTest.php:7

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

assertXmlStringEqualsXmlFile()
assertXmlStringEqualsXmlFile(string $expectedFile, string $actu-
alXml[, string $message = ''])

Reports an error identified by $message if the XML document in $actualXml is not equal to the
XML document in $expectedFile.

assertXmlStringNotEqualsXmlFile() is the inverse of this assertion and takes the same
arguments.

Example A.45. Usage of assertXmlStringEqualsXmlFile()

<?php
use PHPUnit\Framework\TestCase;

class XmlStringEqualsXmlFileTest extends TestCase
{
 public function testFailure()
 {
 $this->assertXmlStringEqualsXmlFile(
 '/home/sb/expected.xml', '<foo><baz/></foo>');
 }
}
?>

phpunit XmlStringEqualsXmlFileTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) XmlStringEqualsXmlFileTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
 <?xml version="1.0"?>
 <foo>
- <bar/>
+ <baz/>
 </foo>

Assertions

128

/home/sb/XmlStringEqualsXmlFileTest.php:7

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

assertXmlStringEqualsXmlString()
assertXmlStringEqualsXmlString(string $expectedXml, string $actu-
alXml[, string $message = ''])

Reports an error identified by $message if the XML document in $actualXml is not equal to the
XML document in $expectedXml.

assertXmlStringNotEqualsXmlString() is the inverse of this assertion and takes the same
arguments.

Example A.46. Usage of assertXmlStringEqualsXmlString()

<?php
use PHPUnit\Framework\TestCase;

class XmlStringEqualsXmlStringTest extends TestCase
{
 public function testFailure()
 {
 $this->assertXmlStringEqualsXmlString(
 '<foo><bar/></foo>', '<foo><baz/></foo>');
 }
}
?>

phpunit XmlStringEqualsXmlStringTest
PHPUnit 5.4.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) XmlStringEqualsXmlStringTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
 <?xml version="1.0"?>
 <foo>
- <bar/>
+ <baz/>
 </foo>

/home/sb/XmlStringEqualsXmlStringTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

129

Appendix B. Annotations
 An annotation is a special form of syntactic metadata that can be added to the source code of some
programming languages. While PHP has no dedicated language feature for annotating source code,
the usage of tags such as @annotation arguments in documentation block has been established
in the PHP community to annotate source code. In PHP documentation blocks are reflective: they
can be accessed through the Reflection API's getDocComment() method on the function, class,
method, and attribute level. Applications such as PHPUnit use this information at runtime to configure
their behaviour.

Note

A doc comment in PHP must start with /** and end with */. Annotations in any other style
of comment will be ignored.

This appendix shows all the varieties of annotations supported by PHPUnit.

@author
 The @author annotation is an alias for the @group annotation (see the section called “@group”)
and allows to filter tests based on their authors.

@after
The @after annotation can be used to specify methods that should be called after each test method
in a test case class.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @after
 */
 public function tearDownSomeFixtures()
 {
 // ...
 }

 /**
 * @after
 */
 public function tearDownSomeOtherFixtures()
 {
 // ...
 }
}

@afterClass
The @afterClass annotation can be used to specify static methods that should be called after all
test methods in a test class have been run to clean up shared fixtures.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

Annotations

130

 /**
 * @afterClass
 */
 public static function tearDownSomeSharedFixtures()
 {
 // ...
 }

 /**
 * @afterClass
 */
 public static function tearDownSomeOtherSharedFixtures()
 {
 // ...
 }
}

@backupGlobals
 The backup and restore operations for global variables can be completely disabled for all tests of a
test case class like this

use PHPUnit\Framework\TestCase;

/**
 * @backupGlobals disabled
 */
class MyTest extends TestCase
{
 // ...
}

 The @backupGlobals annotation can also be used on the test method level. This allows for a fine-
grained configuration of the backup and restore operations:

use PHPUnit\Framework\TestCase;

/**
 * @backupGlobals disabled
 */
class MyTest extends TestCase
{
 /**
 * @backupGlobals enabled
 */
 public function testThatInteractsWithGlobalVariables()
 {
 // ...
 }
}

@backupStaticAttributes
 The @backupStaticAttributes annotation can be used to back up all static property values
in all declared classes before each test and restore them afterwards. It may be used at the test case
class or test method level:

use PHPUnit\Framework\TestCase;

/**

Annotations

131

 * @backupStaticAttributes enabled
 */
class MyTest extends TestCase
{
 /**
 * @backupStaticAttributes disabled
 */
 public function testThatInteractsWithStaticAttributes()
 {
 // ...
 }
}

Note

@backupStaticAttributes is limited by PHP internals and may cause unintended
static values to persist and leak into subsequent tests in some circumstances.

See the section called “Global State” for details.

@before
The @before annotation can be used to specify methods that should be called before each test method
in a test case class.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @before
 */
 public function setupSomeFixtures()
 {
 // ...
 }

 /**
 * @before
 */
 public function setupSomeOtherFixtures()
 {
 // ...
 }
}

@beforeClass
The @beforeClass annotation can be used to specify static methods that should be called before
any test methods in a test class are run to set up shared fixtures.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @beforeClass
 */
 public static function setUpSomeSharedFixtures()
 {

Annotations

132

 // ...
 }

 /**
 * @beforeClass
 */
 public static function setUpSomeOtherSharedFixtures()
 {
 // ...
 }
}

@codeCoverageIgnore*
 The @codeCoverageIgnore, @codeCoverageIgnoreStart and @codeCoverageIg-
noreEnd annotations can be used to exclude lines of code from the coverage analysis.

For usage see the section called “Ignoring Code Blocks”.

@covers
 The @covers annotation can be used in the test code to specify which method(s) a test method
wants to test:

/**
 * @covers BankAccount::getBalance
 */
public function testBalanceIsInitiallyZero()
{
 $this->assertEquals(0, $this->ba->getBalance());
}

If provided, only the code coverage information for the specified method(s) will be considered.

Table B.1, “Annotations for specifying which methods are covered by a test” shows the syntax of the
@covers annotation.

Table B.1. Annotations for specifying which methods are covered by a test

Annotation Description

@covers ClassName::methodName Specifies that the annotated
test method covers the specified
method.

@covers ClassName Specifies that the annotated
test method covers all methods
of a given class.

@covers ClassName<extended> Specifies that the annotated
test method covers all methods
of a given class and its parent
class(es) and interface(s).

@covers ClassName::<public> Specifies that the annotated
test method covers all public
methods of a given class.

@covers ClassName::<protected> Specifies that the annotated
test method covers all protected
methods of a given class.

Annotations

133

Annotation Description

@covers ClassName::<private> Specifies that the annotated
test method covers all private
methods of a given class.

@covers ClassName::<!public> Specifies that the annotated
test method covers all methods
of a given class that are not
public.

@covers ClassName::<!protected> Specifies that the annotated
test method covers all methods
of a given class that are not
protected.

@covers ClassName::<!private> Specifies that the annotated
test method covers all methods
of a given class that are not
private.

@covers ::functionName Specifies that the annotated
test method covers the specified
global function.

@coversDefaultClass
 The @coversDefaultClass annotation can be used to specify a default namespace or class name.
That way long names don't need to be repeated for every @covers annotation. See Example B.1,
“Using @coversDefaultClass to shorten annotations”.

Example B.1. Using @coversDefaultClass to shorten annotations

<?php
use PHPUnit\Framework\TestCase;

/**
 * @coversDefaultClass \Foo\CoveredClass
 */
class CoversDefaultClassTest extends TestCase
{
 /**
 * @covers ::publicMethod
 */
 public function testSomething()
 {
 $o = new Foo\CoveredClass;
 $o->publicMethod();
 }
}
?>

@coversNothing
 The @coversNothing annotation can be used in the test code to specify that no code coverage
information will be recorded for the annotated test case.

This can be used for integration testing. See Example 11.3, “A test that specifies that no method should
be covered” for an example.

The annotation can be used on the class and the method level and will override any @covers tags.

Annotations

134

@dataProvider
 A test method can accept arbitrary arguments. These arguments are to be provided by a data provider
method (provider() in Example 2.5, “Using a data provider that returns an array of arrays”). The
data provider method to be used is specified using the @dataProvider annotation.

See the section called “Data Providers” for more details.

@depends
 PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of
an instance of the test fixture by a producer and passing it to the dependent consumers. Example 2.2,
“Using the @depends annotation to express dependencies” shows how to use the @depends anno-
tation to express dependencies between test methods.

See the section called “Test Dependencies” for more details.

@expectedException
 Example 2.10, “Using the expectException() method” shows how to use the @expectedExcep-
tion annotation to test whether an exception is thrown inside the tested code.

See the section called “Testing Exceptions” for more details.

@expectedExceptionCode
 The @expectedExceptionCode annotation, in conjunction with the @expectedException
allows making assertions on the error code of a thrown exception thus being able to narrow down a
specific exception.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionCode 20
 */
 public function testExceptionHasErrorcode20()
 {
 throw new MyException('Some Message', 20);
 }
}

To ease testing and reduce duplication a shortcut can be used to specify a class constant as an @ex-
pectedExceptionCode using the "@expectedExceptionCode ClassName::CONST"
syntax.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionCode MyClass::ERRORCODE
 */
 public function testExceptionHasErrorcode20()
 {

Annotations

135

 throw new MyException('Some Message', 20);
 }
}
class MyClass
{
 const ERRORCODE = 20;
}

@expectedExceptionMessage
 The @expectedExceptionMessage annotation works similar to @expectedException-
Code as it lets you make an assertion on the error message of an exception.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionMessage Some Message
 */
 public function testExceptionHasRightMessage()
 {
 throw new MyException('Some Message', 20);
 }
}

The expected message can be a substring of the exception Message. This can be useful to only assert
that a certain name or parameter that was passed in shows up in the exception and not fixate the whole
exception message in the test.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionMessage broken
 */
 public function testExceptionHasRightMessage()
 {
 $param = "broken";
 throw new MyException('Invalid parameter "'.$param.'".', 20);
 }
}

To ease testing and reduce duplication a shortcut can be used to specify a class con-
stant as an @expectedExceptionMessage using the "@expectedExceptionMessage
ClassName::CONST" syntax. A sample can be found in the section called “@expectedException-
Code”.

@expectedExceptionMessageRegExp
 The expected message can also be specified as a regular expression using the @expectedExcep-
tionMessageRegExp annotation. This is helpful for situations where a substring is not adequate
for matching a given message.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

Annotations

136

 /**
 * @expectedException MyException
 * @expectedExceptionMessageRegExp /Argument \d+ can not be an? \w+/
 */
 public function testExceptionHasRightMessage()
 {
 throw new MyException('Argument 2 can not be an integer');
 }
}

@group
 A test can be tagged as belonging to one or more groups using the @group annotation like this

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @group specification
 */
 public function testSomething()
 {
 }

 /**
 * @group regresssion
 * @group bug2204
 */
 public function testSomethingElse()
 {
 }
}

Tests can be selected for execution based on groups using the --group and --exclude-group
options of the command-line test runner or using the respective directives of the XML configuration
file.

@large
 The @large annotation is an alias for @group large.

 If the PHP_Invoker package is installed and strict mode is enabled, a large test will fail if it takes
longer than 60 seconds to execute. This timeout is configurable via the timeoutForLargeTests
attribute in the XML configuration file.

@medium
 The @medium annotation is an alias for @group medium. A medium test must not depend on a
test marked as @large.

 If the PHP_Invoker package is installed and strict mode is enabled, a medium test will fail if it takes
longer than 10 seconds to execute. This timeout is configurable via the timeoutForMediumTests
attribute in the XML configuration file.

@preserveGlobalState
 When a test is run in a separate process, PHPUnit will attempt to preserve the global state from
the parent process by serializing all globals in the parent process and unserializing them in the child

Annotations

137

process. This can cause problems if the parent process contains globals that are not serializable. To
fix this, you can prevent PHPUnit from preserving global state with the @preserveGlobalState
annotation.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
 public function testInSeparateProcess()
 {
 // ...
 }
}

@requires
 The @requires annotation can be used skip tests when common preconditions, like the PHP Ver-
sion or installed extensions, are not met.

 A complete list of possibilities and examples can be found at Table 7.3, “Possible @requires usages”

@runTestsInSeparateProcesses
 Indicates that all tests in a test class should be run in a separate PHP process.

use PHPUnit\Framework\TestCase;

/**
 * @runTestsInSeparateProcesses
 */
class MyTest extends TestCase
{
 // ...
}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing all globals in the parent process and unserializing them in the child process. This can cause
problems if the parent process contains globals that are not serializable. See the section called “@pre-
serveGlobalState” for information on how to fix this.

@runInSeparateProcess
 Indicates that a test should be run in a separate PHP process.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{
 /**
 * @runInSeparateProcess
 */
 public function testInSeparateProcess()
 {
 // ...
 }

Annotations

138

}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing all globals in the parent process and unserializing them in the child process. This can cause
problems if the parent process contains globals that are not serializable. See the section called “@pre-
serveGlobalState” for information on how to fix this.

@small
 The @small annotation is an alias for @group small. A small test must not depend on a test
marked as @medium or @large.

 If the PHP_Invoker package is installed and strict mode is enabled, a small test will fail if it takes
longer than 1 second to execute. This timeout is configurable via the timeoutForSmallTests
attribute in the XML configuration file.

Note

Tests need to be explicitly annotated by either @small, @medium, or @large to enable
run time limits.

@test
 As an alternative to prefixing your test method names with test, you can use the @test annotation
in a method's DocBlock to mark it as a test method.

/**
 * @test
 */
public function initialBalanceShouldBe0()
{
 $this->assertEquals(0, $this->ba->getBalance());
}

@testdox

@ticket

@uses
 The @uses annotation specifies code which will be executed by a test, but is not intended to be
covered by the test. A good example is a value object which is necessary for testing a unit of code.

/**
 * @covers BankAccount::deposit
 * @uses Money
 */
public function testMoneyCanBeDepositedInAccount()
{

Annotations

139

 // ...
}

This annotation is especially useful in strict coverage mode where unintentionally covered code will
cause a test to fail. See the section called “Unintentionally Covered Code” for more information re-
garding strict coverage mode.

140

Appendix C. The XML Configuration
File

PHPUnit
The attributes of the <phpunit> element can be used to configure PHPUnit's core functionality.

<phpunit
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/4.5/phpunit.xsd"
 backupGlobals="true"
 backupStaticAttributes="false"
 <!--bootstrap="/path/to/bootstrap.php"-->
 cacheTokens="false"
 colors="false"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 forceCoversAnnotation="false"
 mapTestClassNameToCoveredClassName="false"
 printerClass="PHPUnit_TextUI_ResultPrinter"
 <!--printerFile="/path/to/ResultPrinter.php"-->
 processIsolation="false"
 stopOnError="false"
 stopOnFailure="false"
 stopOnIncomplete="false"
 stopOnSkipped="false"
 stopOnRisky="false"
 testSuiteLoaderClass="PHPUnit_Runner_StandardTestSuiteLoader"
 <!--testSuiteLoaderFile="/path/to/StandardTestSuiteLoader.php"-->
 timeoutForSmallTests="1"
 timeoutForMediumTests="10"
 timeoutForLargeTests="60"
 verbose="false">
 <!-- ... -->
</phpunit>

The XML configuration above corresponds to the default behaviour of the TextUI test runner docu-
mented in the section called “Command-Line Options”.

Additional options that are not available as command-line options are:

convertErrorsToExcep-
tions

By default, PHPUnit will install an error handler that converts
the following errors to exceptions:

• E_WARNING

• E_NOTICE

• E_USER_ERROR

• E_USER_WARNING

• E_USER_NOTICE

• E_STRICT

• E_RECOVERABLE_ERROR

The XML Configuration File

141

• E_DEPRECATED

• E_USER_DEPRECATED

Set convertErrorsToExceptions to false to disable
this feature.

convertNoticesToExcep-
tions

When set to false, the error handler installed by con-
vertErrorsToExceptions will not convert E_NOTICE,
E_USER_NOTICE, or E_STRICT errors to exceptions.

convertWarningsToExcep-
tions

When set to false, the error handler installed by convert-
ErrorsToExceptions will not convert E_WARNING or
E_USER_WARNING errors to exceptions.

forceCoversAnnotation Code Coverage will only be recorded for tests that use the
@covers annotation documented in the section called “@cov-
ers”.

timeoutForLargeTests If time limits based on test size are enforced then this attribute
sets the timeout for all tests marked as @large. If a test does
not complete within its configured timeout, it will fail.

timeoutForMediumTests If time limits based on test size are enforced then this attribute
sets the timeout for all tests marked as @medium. If a test does
not complete within its configured timeout, it will fail.

timeoutForSmallTests If time limits based on test size are enforced then this at-
tribute sets the timeout for all tests not marked as @medium
or @large. If a test does not complete within its configured
timeout, it will fail.

Test Suites
 The <testsuites> element and its one or more <testsuite> children can be used to compose
a test suite out of test suites and test cases.

<testsuites>
 <testsuite name="My Test Suite">
 <directory>/path/to/*Test.php files</directory>
 <file>/path/to/MyTest.php</file>
 <exclude>/path/to/exclude</exclude>
 </testsuite>
</testsuites>

Using the phpVersion and phpVersionOperator attributes, a required PHP version can be
specified. The example below will only add the /path/to/*Test.php files and /path/to/
MyTest.php file if the PHP version is at least 5.3.0.

<testsuites>
 <testsuite name="My Test Suite">
 <directory suffix="Test.php" phpVersion="5.3.0" phpVersionOperator=">=">/path/to/files</directory>
 <file phpVersion="5.3.0" phpVersionOperator=">=">/path/to/MyTest.php</file>
 </testsuite>
 </testsuites>

The phpVersionOperator attribute is optional and defaults to >=.

The XML Configuration File

142

Groups
 The <groups> element and its <include>, <exclude>, and <group> children can be used
to select groups of tests marked with the @group annotation (documented in the section called
“@group”) that should (not) be run.

<groups>
 <include>
 <group>name</group>
 </include>
 <exclude>
 <group>name</group>
 </exclude>
</groups>

The XML configuration above corresponds to invoking the TextUI test runner with the following
options:

• --group name

• --exclude-group name

Whitelisting Files for Code Coverage
 The <filter> element and its children can be used to configure the whitelist for the code coverage
reporting.

<filter>
 <whitelist processUncoveredFilesFromWhitelist="true">
 <directory suffix=".php">/path/to/files</directory>
 <file>/path/to/file</file>
 <exclude>
 <directory suffix=".php">/path/to/files</directory>
 <file>/path/to/file</file>
 </exclude>
 </whitelist>
</filter>

Logging
 The <logging> element and its <log> children can be used to configure the logging of the test
execution.

<logging>
 <log type="coverage-html" target="/tmp/report" lowUpperBound="35"
 highLowerBound="70"/>
 <log type="coverage-clover" target="/tmp/coverage.xml"/>
 <log type="coverage-php" target="/tmp/coverage.serialized"/>
 <log type="coverage-text" target="php://stdout" showUncoveredFiles="false"/>
 <log type="json" target="/tmp/logfile.json"/>
 <log type="tap" target="/tmp/logfile.tap"/>
 <log type="junit" target="/tmp/logfile.xml" logIncompleteSkipped="false"/>
 <log type="testdox-html" target="/tmp/testdox.html"/>
 <log type="testdox-text" target="/tmp/testdox.txt"/>
</logging>

The XML configuration above corresponds to invoking the TextUI test runner with the following
options:

The XML Configuration File

143

• --coverage-html /tmp/report

• --coverage-clover /tmp/coverage.xml

• --coverage-php /tmp/coverage.serialized

• --coverage-text

• --log-json /tmp/logfile.json

• > /tmp/logfile.txt

• --log-tap /tmp/logfile.tap

• --log-junit /tmp/logfile.xml

• --testdox-html /tmp/testdox.html

• --testdox-text /tmp/testdox.txt

The lowUpperBound, highLowerBound, logIncompleteSkipped and showUncov-
eredFiles attributes have no equivalent TextUI test runner option.

• lowUpperBound: Maximum coverage percentage to be considered "lowly" covered.

• highLowerBound: Minimum coverage percentage to be considered "highly" covered.

• showUncoveredFiles: Show all whitelisted files in --coverage-text output not just the
ones with coverage information.

• showOnlySummary: Show only the summary in --coverage-text output.

Test Listeners
 The <listeners> element and its <listener> children can be used to attach additional test
listeners to the test execution.

<listeners>
 <listener class="MyListener" file="/optional/path/to/MyListener.php">
 <arguments>
 <array>
 <element key="0">
 <string>Sebastian</string>
 </element>
 </array>
 <integer>22</integer>
 <string>April</string>
 <double>19.78</double>
 <null/>
 <object class="stdClass"/>
 </arguments>
 </listener>
</listeners>

The XML configuration above corresponds to attaching the $listener object (see below) to the
test execution:

$listener = new MyListener(
 ['Sebastian'],
 22,
 'April',
 19.78,

The XML Configuration File

144

 null,
 new stdClass
);

Setting PHP INI settings, Constants and
Global Variables

 The <php> element and its children can be used to configure PHP settings, constants, and global
variables. It can also be used to prepend the include_path.

<php>
 <includePath>.</includePath>
 <ini name="foo" value="bar"/>
 <const name="foo" value="bar"/>
 <var name="foo" value="bar"/>
 <env name="foo" value="bar"/>
 <post name="foo" value="bar"/>
 <get name="foo" value="bar"/>
 <cookie name="foo" value="bar"/>
 <server name="foo" value="bar"/>
 <files name="foo" value="bar"/>
 <request name="foo" value="bar"/>
</php>

The XML configuration above corresponds to the following PHP code:

ini_set('foo', 'bar');
define('foo', 'bar');
$GLOBALS['foo'] = 'bar';
$_ENV['foo'] = 'bar';
$_POST['foo'] = 'bar';
$_GET['foo'] = 'bar';
$_COOKIE['foo'] = 'bar';
$_SERVER['foo'] = 'bar';
$_FILES['foo'] = 'bar';
$_REQUEST['foo'] = 'bar';

Configuring Browsers for Selenium RC
 The <selenium> element and its <browser> children can be used to configure a list of Selenium
RC servers.

<selenium>
 <browser name="Firefox on Linux"
 browser="*firefox /usr/lib/firefox/firefox-bin"
 host="my.linux.box"
 port="4444"
 timeout="30000"/>
</selenium>

The XML configuration above corresponds to the following PHP code:

class WebTest extends PHPUnit_Extensions_SeleniumTestCase
{
 public static $browsers = [
 [
 'name' => 'Firefox on Linux',
 'browser' => '*firefox /usr/lib/firefox/firefox-bin',
 'host' => 'my.linux.box',

The XML Configuration File

145

 'port' => 4444,
 'timeout' => 30000
]
];

 // ...
}

146

Appendix D. Index

Index
Symbols

$backupGlobalsBlacklist, 31
$backupStaticAttributesBlacklist, 31
@author, , 129
@backupGlobals, 31, 130, 130
@backupStaticAttributes, 31, 130
@codeCoverageIgnore, 78, 132
@codeCoverageIgnoreEnd, 78, 132
@codeCoverageIgnoreStart, 78, 132
@covers, 79, 132
@coversDefaultClass, 133
@coversNothing, 80, 133
@dataProvider, 8, 11, 12, 12, 134
@depends, 6, 6, 11, 12, 12, 134
@expectedException, 13, 134
@expectedExceptionCode, 134
@expectedExceptionMessage, 135
@expectedExceptionMessageRegExp, 135
@group, , , , 136
@large, 136
@medium, 136
@preserveGlobalState, 136
@requires, 137, 137
@runInSeparateProcess, 137
@runTestsInSeparateProcesses, 137
@small, 138
@test, 5, 138
@testdox, 138
@ticket, 138
@uses, 138

A
Agile Documentation, , , 82
Annotation, 5, 6, 6, 8, 11, 12, 12, 13, , , , 78, 79, 80, 129
anything(),
arrayHasKey(),
assertArrayHasKey(), 93
assertArrayNotHasKey(), 93
assertArraySubset(), 94, 94
assertAttributeContains(), 95
assertAttributeContainsOnly(), 97
assertAttributeEmpty(), 99
assertAttributeEquals(), 102
assertAttributeGreaterThan(), 108
assertAttributeGreaterThanOrEqual(), 109
assertAttributeInstanceOf(), 110
assertAttributeInternalType(), 111
assertAttributeLessThan(), 114
assertAttributeLessThanOrEqual(), 115
assertAttributeNotContains(), 95
assertAttributeNotContainsOnly(), 97

Index

147

assertAttributeNotEmpty(), 99
assertAttributeNotEquals(), 102
assertAttributeNotInstanceOf(), 110
assertAttributeNotInternalType(), 111
assertAttributeNotSame(), 120
assertAttributeSame(), 120
assertClassHasAttribute(), 93
assertClassHasStaticAttribute(), 95
assertClassNotHasAttribute(), 93
assertClassNotHasStaticAttribute(), 95
assertContains(), 95
assertContainsOnly(), 97
assertContainsOnlyInstancesOf(), 98
assertCount(), 99
assertEmpty(), 99
assertEquals(), 102
assertEqualXMLStructure(), 100
assertFalse(), 106
assertFileEquals(), 107
assertFileExists(), 108
assertFileNotEquals(), 107
assertFileNotExists(), 108
assertFinite(), 110
assertGreaterThan(), 108
assertGreaterThanOrEqual(), 109
assertInfinite(), 110
assertInstanceOf(), 110
assertInternalType(), 111
assertJsonFileEqualsJsonFile(), 112
assertJsonFileNotEqualsJsonFile(), 112
assertJsonStringEqualsJsonFile(), 112
assertJsonStringEqualsJsonString(), 113
assertJsonStringNotEqualsJsonFile(), 112
assertJsonStringNotEqualsJsonString(), 113
assertLessThan(), 114
assertLessThanOrEqual(), 115
assertNan(), 115
assertNotContains(), 95
assertNotContainsOnly(), 97
assertNotCount(), 99
assertNotEmpty(), 99
assertNotEquals(), 102
assertNotInstanceOf(), 110
assertNotInternalType(), 111
assertNotNull(), 116
assertNotRegExp(), 117
assertNotSame(), 120
assertNull(), 116
assertObjectHasAttribute(), 117
assertObjectNotHasAttribute(), 117
assertPostConditions(), 28
assertPreConditions(), 28
assertRegExp(), 117
assertSame(), 120
assertStringEndsNotWith(), 121
assertStringEndsWith(), 121
assertStringEqualsFile(), 122
assertStringMatchesFormat(), 118

Index

148

assertStringMatchesFormatFile(), 119
assertStringNotEqualsFile(), 122
assertStringNotMatchesFormat(), 118
assertStringNotMatchesFormatFile(), 119
assertStringStartsNotWith(), 122
assertStringStartsWith(), 122
assertThat(), 123
assertTrue(), 125
assertXmlFileEqualsXmlFile(), 126
assertXmlFileNotEqualsXmlFile(), 126
assertXmlStringEqualsXmlFile(), 127
assertXmlStringEqualsXmlString(), 128
assertXmlStringNotEqualsXmlFile(), 127
assertXmlStringNotEqualsXmlString(), 128
attribute(),
attributeEqualTo(),
Automated Documentation, 82

C
Change Risk Anti-Patterns (CRAP) Index,
classHasAttribute(),
classHasStaticAttribute(),
Code Coverage, , , , , , 77, 132, 142

Branch Coverage,
Class and Trait Coverage,
Function and Method Coverage,
Line Coverage,
Opcode Coverage,
Path Coverage,
Whitelist, 78

Configuration, ,
Constant, 144
contains(),
containsOnly(),
containsOnlyInstancesOf(),
createMock(), 59, 59, 60, 60, 61, 61, 62, 62

D
Data-Driven Tests, 90
Defect Localization, 6
Depended-On Component, 58
Documenting Assumptions, 82

E
equalTo(),
Error, 20
Error Handler, 14
Exception, 12
expectException(), 12
expectExceptionCode(), 13
expectExceptionMessage(), 13
expectExceptionMessageRegExp(), 13
Extreme Programming, 82

F
Failure, 20
fileExists(),

Index

149

Fixture, 27
Fluent Interface, 58

G
getMockBuilder(), 68
getMockForAbstractClass(), 70
getMockForTrait(), 69
getMockFromWsdl(), 70
Global Variable, 30, 144
greaterThan(),
greaterThanOrEqual(),

H
hasAttribute(),

I
identicalTo(),
include_path,
Incomplete Test, 35
isFalse(),
isInstanceOf(),
isNull(),
isTrue(),
isType(),

J
JSON,

L
lessThan(),
lessThanOrEqual(),
Logfile, ,
Logging, 84, 142
logicalAnd(),
logicalNot(),
logicalOr(),
logicalXor(),

M
matchesRegularExpression(),
method(), 59, 59, 60, 60, 61, 61, 62, 62
Mock Object, 63, 64

O
onConsecutiveCalls(), 62
onNotSuccessfulTest(), 28

P
PHP Error, 14
PHP Notice, 14
PHP Warning, 14
php.ini, 144
phpunit\framework\TestCase, 5, 87
PHPUnit_Extensions_RepeatedTest, 90
PHPUnit_Extensions_TestDecorator, 90
PHPUnit_Framework_BaseTestListener, 89

Index

150

PHPUnit_Framework_Error, 14
PHPUnit_Framework_Error_Notice, 14
PHPUnit_Framework_Error_Warning, 14
PHPUnit_Framework_IncompleteTest, 35
PHPUnit_Framework_IncompleteTestError, 35
PHPUnit_Framework_Test, 90
PHPUnit_Framework_TestListener, , 88, 143
PHPUnit_Runner_TestSuiteLoader,
PHPUnit_Util_Printer,
PHP_Invoker, 136, 136, 138
Process Isolation,

R
Refactoring, 75
Report,
returnArgument(), 60
returnCallback(), 61
returnSelf(), 60
returnValueMap(), 61

S
Selenium RC, 144
setUp(), 27, 28, 28
setUpBeforeClass, 30
setUpBeforeClass(), 28, 28
stringContains(),
stringEndsWith(),
stringStartsWith(),
Stub, 58
Stubs, 82
System Under Test, 58

T
tearDown(), 27, 28, 28
tearDownAfterClass, 30
tearDownAfterClass(), 28, 28
Template Method, 27, 28, 28, 28
Test Dependencies, 5
Test Double, 58
Test Groups, , , , 142
Test Isolation, , , , 30
Test Listener, 143
Test Suite, 32, 141
TestDox, 82, 138
throwException(), 62
timeoutForLargeTests, 136
timeoutForMediumTests, 136
timeoutForSmallTests, 138

W
Whitelist, 142
will(), 60, 60, 61, 61, 62, 62
willReturn(), 59, 59

X
Xdebug, 77
XML Configuration, 33

151

Appendix E. Bibliography
[Astels2003] Test Driven Development. David Astels. Copyright © 2003. Prentice Hall. ISBN 0131016490.

[Beck2002] Test Driven Development by Example. Kent Beck. Copyright © 2002. Addison-Wesley. ISBN
0-321-14653-0.

[Meszaros2007] xUnit Test Patterns: Refactoring Test Code. Gerard Meszaros. Copyright © 2007. Addison-Wes-
ley. ISBN 978-0131495050.

152

Appendix F. Copyright
Copyright (c) 2005-2016 Sebastian Bergmann.

This work is licensed under the Creative Commons Attribution 3.0
Unported License.

A summary of the license is given below, followed by the full legal
text.

--

You are free:

 * to Share - to copy, distribute and transmit the work
 * to Remix - to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

 * For any reuse or distribution, you must make clear to others
 the license terms of this work. The best way to do this is with
 a link to this web page.

 * Any of the above conditions can be waived if you get
 permission from the copyright holder.

 * Nothing in this license impairs or restricts the author's moral
 rights.

Your fair dealing and other rights are in no way affected by the
above.

This is a human-readable summary of the Legal Code (the full
license) below.

==

Creative Commons Legal Code
Attribution 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU

Copyright

153

THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

 a. "Adaptation" means a work based upon the Work, or upon the
 Work and other pre-existing works, such as a translation,
 adaptation, derivative work, arrangement of music or other
 alterations of a literary or artistic work, or phonogram or
 performance and includes cinematographic adaptations or any
 other form in which the Work may be recast, transformed, or
 adapted including in any form recognizably derived from the
 original, except that a work that constitutes a Collection
 will not be considered an Adaptation for the purpose of this
 License. For the avoidance of doubt, where the Work is a
 musical work, performance or phonogram, the synchronization of
 the Work in timed-relation with a moving image ("synching")
 will be considered an Adaptation for the purpose of this
 License.

 b. "Collection" means a collection of literary or artistic works,
 such as encyclopedias and anthologies, or performances,
 phonograms or broadcasts, or other works or subject matter
 other than works listed in Section 1(f) below, which, by
 reason of the selection and arrangement of their contents,
 constitute intellectual creations, in which the Work is
 included in its entirety in unmodified form along with one or
 more other contributions, each constituting separate and
 independent works in themselves, which together are assembled
 into a collective whole. A work that constitutes a Collection
 will not be considered an Adaptation (as defined above) for
 the purposes of this License.

 c. "Distribute" means to make available to the public the
 original and copies of the Work or Adaptation, as appropriate,
 through sale or other transfer of ownership.

 d. "Licensor" means the individual, individuals, entity or
 entities that offer(s) the Work under the terms of this License.

 e. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who
 created the Work or if no individual or entity can be
 identified, the publisher; and in addition (i) in the case of
 a performance the actors, singers, musicians, dancers, and
 other persons who act, sing, deliver, declaim, play in,
 interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the
 producer being the person or legal entity who first fixes the
 sounds of a performance or other sounds; and, (iii) in the
 case of broadcasts, the organization that transmits the
 broadcast.

 f. "Work" means the literary and/or artistic work offered under
 the terms of this License including without limitation any
 production in the literary, scientific and artistic domain,
 whatever may be the mode or form of its expression including
 digital form, such as a book, pamphlet and other writing; a
 lecture, address, sermon or other work of the same nature; a
 dramatic or dramatico-musical work; a choreographic work or
 entertainment in dumb show; a musical composition with or
 without words; a cinematographic work to which are assimilated
 works expressed by a process analogous to cinematography; a
 work of drawing, painting, architecture, sculpture, engraving

Copyright

154

 or lithography; a photographic work to which are assimilated
 works expressed by a process analogous to photography; a work
 of applied art; an illustration, map, plan, sketch or three-
 dimensional work relative to geography, topography,
 architecture or science; a performance; a broadcast; a
 phonogram; a compilation of data to the extent it is protected
 as a copyrightable work; or a work performed by a variety or
 circus performer to the extent it is not otherwise considered
 a literary or artistic work.

 g. "You" means an individual or entity exercising rights under
 this License who has not previously violated the terms of
 this License with respect to the Work, or who has received
 express permission from the Licensor to exercise rights under
 this License despite a previous violation.

 h. "Publicly Perform" means to perform public recitations of the
 Work and to communicate to the public those public
 recitations, by any means or process, including by wire or
 wireless means or public digital performances; to make
 available to the public Works in such a way that members of
 the public may access these Works from a place and at a place
 individually chosen by them; to perform the Work to the public
 by any means or process and the communication to the public of
 the performances of the Work, including by public digital
 performance; to broadcast and rebroadcast the Work by any
 means including signs, sounds or images.

 i. "Reproduce" means to make copies of the Work by any means
 including without limitation by sound or visual recordings and
 the right of fixation and reproducing fixations of the Work,
 including storage of a protected performance or phonogram in
 digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to
 reduce, limit, or restrict any uses free from copyright or rights
 arising from limitations or exceptions that are provided for in
 connection with the copyright protection under copyright law or
 other applicable laws.

3. License Grant. Subject to the terms and conditions of this
 License, Licensor hereby grants You a worldwide, royalty-free,
 non-exclusive, perpetual (for the duration of the applicable
 copyright) license to exercise the rights in the Work as stated
 below:

 a. to Reproduce the Work, to incorporate the Work into one or
 more Collections, and to Reproduce the Work as incorporated
 in the Collections;

 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes
 reasonable steps to clearly label, demarcate or otherwise
 identify that changes were made to the original Work. For
 example, a translation could be marked "The original work was
 translated from English to Spanish," or a modification could
 indicate "The original work has been modified.";

 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,

 d. to Distribute and Publicly Perform Adaptations.

 e. For the avoidance of doubt:

Copyright

155

 i. Non-waivable Compulsory License Schemes. In those
 jurisdictions in which the right to collect royalties
 through any statutory or compulsory licensing scheme cannot
 be waived, the Licensor reserves the exclusive right to
 collect such royalties for any exercise by You of the
 rights granted under this License;

 ii. Waivable Compulsory License Schemes. In those
 jurisdictions in which the right to collect royalties
 through any statutory or compulsory licensing scheme can
 be waived, the Licensor waives the exclusive right to
 collect such royalties for any exercise by You of the
 rights granted under this License; and,

 iii. Voluntary License Schemes. The Licensor waives the right
 to collect royalties, whether individually or, in the
 event that the Licensor is a member of a collecting
 society that administers voluntary licensing schemes, via
 that society, from any exercise by You of the rights
 granted under this License.

The above rights may be exercised in all media and formats whether
now known or hereafter devised. The above rights include the right
to make such modifications as are technically necessary to exercise
the rights in other media and formats. Subject to Section 8(f), all
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:

 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the
 Uniform Resource Identifier (URI) for, this License with every
 copy of the Work You Distribute or Publicly Perform. You may
 not offer or impose any terms on the Work that restrict the
 terms of this License or the ability of the recipient of the
 Work to exercise the rights granted to that recipient under
 the terms of the License. You may not sublicense the Work. You
 must keep intact all notices that refer to this License and to
 the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or
 Publicly Perform the Work, You may not impose any effective
 technological measures on the Work that restrict the ability
 of a recipient of the Work from You to exercise the rights
 granted to that recipient under the terms of the License. This
 Section 4(a) applies to the Work as incorporated in a
 Collection, but this does not require the Collection apart
 from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any
 Licensor You must, to the extent practicable, remove from the
 Collection any credit as required by Section 4(b), as
 requested. If You create an Adaptation, upon notice from any
 Licensor You must, to the extent practicable, remove from the
 Adaptation any credit as required by Section 4(b), as requested.

 b. If You Distribute, or Publicly Perform the Work or any
 Adaptations or Collections, You must, unless a request has
 been made pursuant to Section 4(a), keep intact all copyright
 notices for the Work and provide, reasonable to the medium or
 means You are utilizing: (i) the name of the Original Author
 (or pseudonym, if applicable) if supplied, and/or if the
 Original Author and/or Licensor designate another party or
 parties (e.g., a sponsor institute, publishing entity,

Copyright

156

 journal) for attribution ("Attribution Parties") in Licensor's
 copyright notice, terms of service or by other reasonable
 means, the name of such party or parties; (ii) the title of
 the Work if supplied; (iii) to the extent reasonably
 practicable, the URI, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to
 the copyright notice or licensing information for the Work;
 and (iv), consistent with Section 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the
 Adaptation (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). The credit required by this Section 4 (b) may be
 implemented in any reasonable manner; provided, however, that
 in the case of a Adaptation or Collection, at a minimum such
 credit will appear, if a credit for all contributing authors
 of the Adaptation or Collection appears, then as part of these
 credits and in a manner at least as prominent as the credits
 for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section
 for the purpose of attribution in the manner set out above
 and, by exercising Your rights under this License, You may not
 implicitly or explicitly assert or imply any connection with,
 sponsorship or endorsement by the Original Author, Licensor
 and/or Attribution Parties, as appropriate, of You or Your use
 of the Work, without the separate, express prior written
 permission of the Original Author, Licensor and/or
 Attribution Parties.

 c. Except as otherwise agreed in writing by the Licensor or as
 may be otherwise permitted by applicable law, if You
 Reproduce, Distribute or Publicly Perform the Work either by
 itself or as part of any Adaptations or Collections, You must
 not distort, mutilate, modify or take other derogatory action
 in relation to the Work which would be prejudicial to the
 Original Author's honor or reputation. Licensor agrees that in
 those jurisdictions (e.g. Japan), in which any exercise of the
 right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion,
 mutilation, modification or other derogatory action
 prejudicial to the Original Author's honor and reputation, the
 Licensor will waive or not assert, as appropriate, this
 Section, to the fullest extent permitted by the applicable
 national law, to enable You to reasonably exercise Your right
 under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
 OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF
 THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY
 OF SUCH DAMAGES.

Copyright

157

7. Termination

 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations
 or Collections from You under this License, however, will not
 have their licenses terminated provided such individuals or
 entities remain in full compliance with those licenses.
 Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
 this License.

 b. Subject to the above terms and conditions, the license granted
 here is perpetual (for the duration of the applicable
 copyright in the Work). Notwithstanding the above, Licensor
 reserves the right to release the Work under different license
 terms or to stop distributing the Work at any time; provided,
 however that any such election will not serve to withdraw this
 License (or any other license that has been, or is required to
 be, granted under the terms of this License), and this License
 will continue in full force and effect unless terminated as
 stated above.

8. Miscellaneous

 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to
 the Work on the same terms and conditions as the license
 granted to You under this License.

 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original
 Work on the same terms and conditions as the license granted
 to You under this License.

 c. If any provision of this License is invalid or unenforceable
 under applicable law, it shall not affect the validity or
 enforceability of the remainder of the terms of this License,
 and without further action by the parties to this agreement,
 such provision shall be reformed to the minimum extent
 necessary to make such provision valid and enforceable.

 d. No term or provision of this License shall be deemed waived
 and no breach consented to unless such waiver or consent shall
 be in writing and signed by the party to be charged with such
 waiver or consent.

 e. This License constitutes the entire agreement between the
 parties with respect to the Work licensed here. There are no
 understandings, agreements or representations with respect to
 the Work not specified here. Licensor shall not be bound by
 any additional provisions that may appear in any communication
 from You. This License may not be modified without the mutual
 written agreement of the Licensor and You.

 f. The rights granted under, and the subject matter referenced,
 in this License were drafted utilizing the terminology of the
 Berne Convention for the Protection of Literary and Artistic
 Works (as amended on September 28, 1979), the Rome Convention
 of 1961, the WIPO Copyright Treaty of 1996, the WIPO
 Performances and Phonograms Treaty of 1996 and the Universal
 Copyright Convention (as revised on July 24, 1971). These
 rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be

Copyright

158

 enforced according to the corresponding provisions of the
 implementation of those treaty provisions in the applicable
 national law. If the standard suite of rights granted under
 applicable copyright law includes additional rights not
 granted under this License, such additional rights are deemed
 to be included in the License; this License is not intended to
 restrict the license of any rights under applicable law.

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Commons
will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general,
special, incidental or consequential damages arising in connection
to this license. Notwithstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of this
License.

Creative Commons may be contacted at http://creativecommons.org/.

==

	PHPUnit Manual
	Table of Contents
	Chapter 1. Installing PHPUnit
	Requirements
	PHP Archive (PHAR)
	Windows
	Verifying PHPUnit PHAR Releases

	Composer
	Optional packages

	Chapter 2. Writing Tests for PHPUnit
	Test Dependencies
	Data Providers
	Testing Exceptions
	Testing PHP Errors
	Testing Output
	Error output
	Edge cases

	Chapter 3. The Command-Line Test Runner
	Command-Line Options

	Chapter 4. Fixtures
	More setUp() than tearDown()
	Variations
	Sharing Fixture
	Global State

	Chapter 5. Organizing Tests
	Composing a Test Suite Using the Filesystem
	Composing a Test Suite Using XML Configuration

	Chapter 6. Risky Tests
	Useless Tests
	Unintentionally Covered Code
	Output During Test Execution
	Test Execution Timeout
	Global State Manipulation

	Chapter 7. Incomplete and Skipped Tests
	Incomplete Tests
	Skipping Tests
	Skipping Tests using @requires

	Chapter 8. Database Testing
	Supported Vendors for Database Testing
	Difficulties in Database Testing
	The four stages of a database test
	1. Clean-Up Database
	2. Set up fixture
	3–5. Run Test, Verify outcome and Teardown

	Configuration of a PHPUnit Database TestCase
	Implementing getConnection()
	Implementing getDataSet()
	What about the Database Schema (DDL)?
	Tip: Use your own Abstract Database TestCase

	Understanding DataSets and DataTables
	Available Implementations
	Flat XML DataSet
	XML DataSet
	MySQL XML DataSet
	YAML DataSet
	CSV DataSet
	Array DataSet
	Query (SQL) DataSet
	Database (DB) Dataset
	Replacement DataSet
	DataSet Filter
	Composite DataSet

	Beware of Foreign Keys
	Implementing your own DataSets/DataTables

	The Connection API
	Database Assertions API
	Asserting the Row-Count of a Table
	Asserting the State of a Table
	Asserting the Result of a Query
	Asserting the State of Multiple Tables

	Frequently Asked Questions
	Will PHPUnit (re-)create the database schema for each test?
	Am I required to use PDO in my application for the Database Extension to work?
	What can I do, when I get a “Too much Connections” Error?
	How to handle NULL with Flat XML / CSV Datasets?

	Chapter 9. Test Doubles
	Stubs
	Mock Objects
	Prophecy
	Mocking Traits and Abstract Classes
	Stubbing and Mocking Web Services
	Mocking the Filesystem

	Chapter 10. Testing Practices
	During Development
	During Debugging

	Chapter 11. Code Coverage Analysis
	Software Metrics for Code Coverage
	Whitelisting Files
	Ignoring Code Blocks
	Specifying Covered Methods
	Edge Cases

	Chapter 12. Other Uses for Tests
	Agile Documentation
	Cross-Team Tests

	Chapter 13. Logging
	Test Results (XML)
	Test Results (TAP)
	Test Results (JSON)
	Code Coverage (XML)
	Code Coverage (TEXT)

	Chapter 14. Extending PHPUnit
	Subclass phpunit\framework\TestCase
	Write custom assertions
	Implement PHPUnit_Framework_TestListener
	Subclass PHPUnit_Extensions_TestDecorator
	Implement PHPUnit_Framework_Test

	Appendix A. Assertions
	assertArrayHasKey()
	assertClassHasAttribute()
	assertArraySubset()
	assertClassHasStaticAttribute()
	assertContains()
	assertContainsOnly()
	assertContainsOnlyInstancesOf()
	assertCount()
	assertEmpty()
	assertEqualXMLStructure()
	assertEquals()
	assertFalse()
	assertFileEquals()
	assertFileExists()
	assertGreaterThan()
	assertGreaterThanOrEqual()
	assertInfinite()
	assertInstanceOf()
	assertInternalType()
	assertJsonFileEqualsJsonFile()
	assertJsonStringEqualsJsonFile()
	assertJsonStringEqualsJsonString()
	assertLessThan()
	assertLessThanOrEqual()
	assertNan()
	assertNull()
	assertObjectHasAttribute()
	assertRegExp()
	assertStringMatchesFormat()
	assertStringMatchesFormatFile()
	assertSame()
	assertStringEndsWith()
	assertStringEqualsFile()
	assertStringStartsWith()
	assertThat()
	assertTrue()
	assertXmlFileEqualsXmlFile()
	assertXmlStringEqualsXmlFile()
	assertXmlStringEqualsXmlString()

	Appendix B. Annotations
	@author
	@after
	@afterClass
	@backupGlobals
	@backupStaticAttributes
	@before
	@beforeClass
	@codeCoverageIgnore*
	@covers
	@coversDefaultClass
	@coversNothing
	@dataProvider
	@depends
	@expectedException
	@expectedExceptionCode
	@expectedExceptionMessage
	@expectedExceptionMessageRegExp
	@group
	@large
	@medium
	@preserveGlobalState
	@requires
	@runTestsInSeparateProcesses
	@runInSeparateProcess
	@small
	@test
	@testdox
	@ticket
	@uses

	Appendix C. The XML Configuration File
	PHPUnit
	Test Suites
	Groups
	Whitelisting Files for Code Coverage
	Logging
	Test Listeners
	Setting PHP INI settings, Constants and Global Variables
	Configuring Browsers for Selenium RC

	Appendix D. Index
	Index

	Appendix E. Bibliography
	Appendix F. Copyright

