PHPUnNIt Manual

Sebastian Bergmann

PHPUnit Manual
Sebastian Bergmann

Publication date Edition for PHPUnit 5.4. Updated on 2016-06-11.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Sebastian Bergmann

Thiswork is licensed under the Creative Commons Attribution 3.0 Unported License.

Table of Contents

1 Installing PHPURNIT ...t et e et e e e e e eees 1
REQUITEIMENTS ...ttt e e et e ettt e ettt e e e e et aeeeeraaeeeens 1

PHP ATChIVE (PHAR) ..t 1
WWVINOOWS .ttt ettt e et e e e b e e eaa s 1

Verifying PHPUNIt PHAR REIEASESviiiiiiieiiii e 2

L0701 0100 1= > S PP PTPPTN 4
OPLiONal PACKAGES ... eeeetee ettt ettt ettt et e e e e aaes 4

2. Writing TestS for PHPURNITcooiiiii e 5
TESE DEPENUENCIES ... ceeetie ettt ettt ettt ettt e e ettt e e et e e et et e e e e et e e eeean e aees 5
DaLA PrOVIOEIS ...ttt ettt et e e e enaans 8
TESHNG EXCEPLIONS ...ceeetnieeieii ettt e et e e e 12
TESHNG PHP EITOIS ...ttt ettt ettt e eeeees 14
TESHNG OULPUL ... eeeete ettt ettt ettt ettt et e e et e ettt e e e ee e e e eaba e e e eetnneeeenes 15
EITON QUEPUL ...t e et e e e e 16
OB CASES ...ttt 18

3. The Command-Line TESt RUNNETuuiiiiiiii e 20
Command-Ling OPLiONSuuiiiiiiiieeeeii ettt ettt e e e et e e e e eee 20

A, FIXEUIES ..ttt ettt ettt e e e 27
More setUp() than tearDOWN()cveeeeneiiiii e 29

AV £z = 110 0 PSPPSR 29
SharNG FIXIUIE ...ttt e e et e et e e e e e eeees 29
GlODEA SEALE ...t 30

5. OrQaNIZING TOSESueiiitie ettt ettt ettt et e et et e et e et e e e enb e e enans 32
Composing a Test Suite Using the FIleSystem ... 32
Composing a Test Suite Using XML Configurationc...ovveeeuinieiiiiinneiiiineeeennnn 33

B, RISKY TS ittt ettt et 34
USEIESS TS ..ttt ettt ettt ettt ettt ettt ettt et et e e e e e e 34
Unintentionally Coverad COEuiiiiiiiiiieiiii et 34
Output DUING TESE EXECULIONcieeeiieiieis ettt e et e e e 34

TeSt EXECULION TIMEOULeeieitieeeiei ettt ettt et e e e e e e e eanans 34
Global State ManipUIELioNcooeueeiiiiii e 34

7. Incomplete and SKIPPEA TESES ...cevuniiiiiie e 35
INCOMPIELE TOSES ...ttt et e et e e et e e e ene s 35
SKIPPING TESES ..ttt ettt et et e 36
SKipping TeStS USING @IEOUITES ...ccvvuieeiiiin ettt e et e et e ettt e et e e e e e e e 37

8. DAANBSE TESHING ... eeetueeieit ettt ettt e et 39
Supported Vendors for Datalase TESHNGcvvvveueieiiiieieiie e 39
Difficulties in Datalase TESHNGcccuvueieiiieeeeiir ettt eeeens 39

The four stages of a database tEStvviiieiiiiii e 40

1. Clean-Up Datalaseuueiiiiiieeei e 40

2. SEEUP FIXEUME L.ttt e e 40

3-5. Run Test, Verify outcome and Teardowncouuveiuiiiiiiiieiiieii e, 40
Configuration of a PHPUNit Database TeSICASEcvevvuieiiiiieeiieie e 41
Implementing getCOoNNECLION()cvvvrueieii ettt e e 41
Implementing getDaaSEL()ccvvvrneeierii et 42

What about the Database Schema (DDL)?coouviiiiiiiieeiiii e 42

Tip: Use your own Abstract Database TESICESEvuvvvveiiiiieiiiiieeeiii e 42
Understanding DataSets and DatalTabIescocuvuiiiiiiiiiiiiiiiceei e 43
Available IMmplementationscoouueiiiiii e 44

Beware of FOraign KEYSiiiiiii e 52
Implementing your own DataSets/DataTablescc.uuvveiiiiiiieiiiiiieecci e 52

The COoNNECLION AP ... et 53
Database ASSEItIONS AP ... 54
Asserting the Row-Count of aTable ..o 54

Asserting the State of @ Tablecooveiiiii 54

PHPUnit Manua

Asserting the Result of @ QUENYcovniiiiici e 55

Asserting the State of Multiple TableScoviiiiiiii e, 55

Frequently ASKEd QUESLIONSuiiiiiieii e e e e e e e e e e e e e e eaaees 56

Will PHPUniIt (re-)create the database schema for eachtest?cccovevviiiinnnnnnn, 56

Am | required to use PDO in my application for the Database Extension to work? 56

What can | do, when | get a“Too much Connections” Error?c..ccoevevvnneennnn. 56

How to handle NULL with Flat XML / CSV DatasetS?cvevvvvveviiinieiiiinieeenenn, 57

S == R T o] = PP 58
SHUBIS e 58
Kol @] o 1= ot £ 63
PrOPNECY .vn it e 69
Mocking Traits and ADSITaCt ClaSSESuivvuiiiiieeiie e e e e 69
Stubbing and MOocking WED SEIVICESuiiiiiiiiii e e e 70
MOcKing the FIIESYSIEM . ..ue e e 72

O 1= g o T o o= 75
DUINNG DEVEIOPMENTiiii i e e e e e e e e e e e e e et e e et e e e e e aanaees 75

DI g1 T0 J D= 10 o o1 o U 75

11. Code CoVerage ANBIYSIS .. .cuuuiiiii et e e e e e e e 77
Software Metrics for Code COVErAgEuviiuniiiii e e e e e e e e e e eaes 77
WHItElIStING FIlES .oovnie e 78
IgNOriNG COOE BIOCKSiiiiciie i e e e e e aaas 78
Specifying Covered MEthOOSiiiiiiiii e 79

0 [TcI 1S N 8l

O s U o) g I P 82
Agile DOCUMENEALIONvuiiiiieeii e e e e e e e e e e e e e e s e e et e e et eeaneeaens 82
CrOSS-TEAM TS ..ttt ettt e e e et e et e et e e e anns 82

G T I o o 1o N 84
TSt RESUIES (XIML) ceviiiiiiii et e et e e e e e enanns 84

TSt RESUIES (TAP) ittt e et e e e et e e e eat e eeees 85

TSt RESUIES (JSON) ..ttt e ettt e et e e et e e e e et s e e e et neeeenaaeeeees 85
Code Covarage (XML .uiii i e 86
Code Covarage (TEXT) ciuuiiiii it e e e e e e e et e e et e e eaaaeees 86

7 1= o 1 g Vo 1 U P 87
Subclass phpunit\framework\TESICASEuuiiiiiiei e e e 87
WIItE CUSLOM @SSEITIONS ...ivvtieeeiii e e e ettt e et s e e et e e et e e e et r e e e eat s e e e entnneeeee 87
Implement PHPUNit_ Framework TeStLIStENErcc.uveiiiiiiiiiiciii e e e 88
Subclass PHPUNit EXteNSioNS TEStDECOratOruvvvueiiieeiiieeiiiieeieee e e e e e einas 90
Implement PHPUNit_ Framework TEStciiiiiii e 90

F = 1 0] 3 PSP 93
BSSENAITAYHASK EY() « . vt 93
aSSErtClassHASALIIDULE() ...ccvuiie i 93

oS VAN = VS U 01 =1) PP 94
assertClassHasStati CAMITDULE()ovvneiii e 95

oS = (01711 0) 95
ASSENtCONTAINSONIY() «.evvieiiiiee e e e e e e e e et e e et e e e eaaas 97
assertContaiNSONIYINStANCESOR () ...ovvvriiiieeie e e e e e eaes 98

o = 1 (01311) 99

o = 1= 10101/ (Y 99
BSSEtEQUAIXMLSITUCIUNE() <ovvneii i e e e e e e e e e e e e e e e e aaeees 100
oS < 1= (U=) PN 102

o = = P 106
BSSENFIEEQUAIS() +ovvnevvrnieei e e e e e e e e e e aaa 107

oS S UL S £ (P 108

oS (== (= I = 108
assertGreater ThaNOFEQUAI() «vu.vvveeeii e e e e e e e e e e e een 109
=S =) T = PN 110
oS S 1 1S = o () P 110
S L1 = WY =) S 111

PHPUnit Manua

assertJSoNFEEqUAlSISONFITE()vvve i e 112
assertJsonStringEqQUAISISONFIIE()iie e 112
assertJsonStriNgEQUAISISONSITING() +vvnevvrneriieeei e e e e e e e e e e e e e e eeees 113
BSSENLESSTNAN() .evneiiii e e 114
oS =] 7= 0 1 =o [0 T 115
2 < 11V 115
2 < 1)V 116
assertObJeCtHASAIIDULE()ucvei i e 117
oS 1= 0| d o (P 117
asSertStriNgMatCheSFOIMEAL()evvueiie i eiie e e e e e e e e e e e e 118
assertStringMatchesFOrmMatFile()oovvniiii e 119
o 1 111 () PN 120
aSSErtSINGENASWILN() .vneieie e e 121
aSSErtSINGEQUAISFITE() .vueiei e e e e e e 122
ASSENtSHINGSIATSWITN() covveiei e e 122
2 < I = PN 123
2 S L I 0) TP 125
assertXMIFIEEqQUal SXIMIFITE() ...vveeeeee e 126
assertXmIStringEqUalSXMIFITE() ...vuiiii e 127
assertXmIStringEqUalSXMISIIING() «vvnevvneiiiee e 128
2 AN 0] = 1o 0P PT 129
(@201 To T 129
o 1= PP 129
L@ <O == 129
@DACKUPGIODAIS ...t e 130
@bacKUPSEAti CATLIDULESceve e e e e e 130
(@] <o (< 131
(@) /o< O == 131
@COAECOVEragEI gNOTE™ .. .eee i e e e e e e e e e e aeas 132
(@2 o0V 7< £ 132
(@COVEISDEFAUIECIESS ... vttt et e e e e e et e e et e e et e aaeaaaaans 133
(@Yoo)L = Lo 1 11 oo PN 133
(@0t v 01V T [S 134
@AEPENGS ... a e 134
@EXPECLEAEXCEPLION ...evniiiieei e e e e e e e e e e e e et eea e e e e aa e eens 134
@eXPECtEdEXCEPLIONCOUE ... cevi i e e e e e e e e e eeen 134
@EXPECtEAEXCEPLIONMESSAOEu i evveeeei et e e e et e e e e e e et e e e e e e e e et s e e e e eaaeeeen 135
@expectedEXCeptioNM ESSAJEREGEXD ... ivvniiiii et 135
(@0 (o o 136
(@ = o= 136
(@100 |10 136
@PreserVEGIODAISIAIEcevu e 136
LY=o LU 1T (=== 137
@runTestSINSEPAratEPIOCESSESuiiiiieiiie e e e e e e e e e e e eaans 137
UV I TE = 07 - 1= e 1000 == N 137
LS 7= | U 138
o= PSP 138
L= (o (o) GOSN 138
oot = SRR 138
@DUSES ...ttt ettt e ettt ettt e e et e e s 138
C. The XML Configuration Fileccuiiiiiiiiii e e 140
[1 T P 140
LIS S =S PPN 141
L] (0100 L= PP 142
Whitelisting Files for Code COVEIragEcuuiiiiniiiiieiiii e e e 142
(o0 o1 1o [N 142
IS A R 01 USRS 143
Setting PHP INI settings, Constants and Global Variablescccooeviiiiiiiiiinns 144

PHPUnit Manua

Configuring Browsers for SElenium RCoooviiiiiiiii e, 144
[2 g o PSP 146
E. BibliOgraphycooviiiiii i 151
L o)1 o | A 152

Vi

List of Tables

2.1. Methods fOr tESHING OULPULuneiiiiie ettt e 16
7.1 API TOr INCOMPIEIE TESIS ... et e e e 36
7.2. AP FOr SKIPPING TESIS ...iiiiiieeeei ettt e eeneas 37
7.3. POSSIDIE @IEQUITES USBIES ...cevueeeetii ettt e ettt e ettt e e et et e e e eeb e e ettt e e e eat e e eeataaeeeens 37
0.1, MACRENS ... 68
N 00 ¢ = 1 =] | £ PP PTTPPPPTI 124
B.1. Annotations for specifying which methods are covered by atestcoooevviviiiiiiinnnnnn. 132

vii

List of Examples

2.1. Testing array operations With PHPURNITooooiiiiiiii e 5
2.2. Using the @lepends annotation to express dependenCiesvvvvevereeeeiiineeeiiieeeeeiennn 6
2.3. Exploiting the dependencies DEWEEN TESESvu i e 7
2.4. Test with multiple dependenCiescooeuuiiie e 7
2.5. Using a data provider that refurns an array of array'soveveeeinieieiiineeeeiie e 8
2.6. Using a data provider with named datasatSoeeieviiiieiiiiiieec e 9
2.7. Using a data provider that returns an Iterator ODJECTccoevviiiiiiiiiieiii e 10
2.8. The COVRIIEITErator ClasSiiieiiiieiiiii et 10
2.9. Combination of @depends and @dataProvider in sametestc.ovvviviviiiiieiiiiiciees 11
2.10. Using the expectException() Methodcoouviiiiiiini e 12
2.11. Using the @expectedEXCEPLion @NNOLELIONveiiiiieeiiiiie e 13
2.12. Expecting a PHP error using @expectedEXCEPLIONoovveviieiiiiiiieeiiiie e 14
2.13. Testing return values of code that UseS PHP EITOrsccciviiiiiiieiiiiieecce e 14
2.14. Testing the output of afunction or Methodcccooviiiiii e, 15
2.15. Error output generated when an array comparison failScooveveviiniiiiiiiniciiiiecenenn, 16
2.16. Error output when an array comparison of an long array failscceiviiiiiiiniiiinnnen. 17
2.17. Edge case in the diff generation when using weak comparisoncccceveeevivinneeennnnnn. 18
3L NAMED BEA SELS .. eevti ettt ettt e 23
3.2. Filter pattern eXampPlEScoouuu e 24
3.3 IO SNOMCULS ...ttt e e e e 24
4.1. Using setUp() to create the stack fiXIUre ..o 27
4.2. Example showing al template methods availableccoooviiiiiiiiii 28
4.3. Sharing fixture between the tests of atest SUIteovviiiiiiiiiiie e, 30
5.1. Composing a Test Suite Using XML Configurationccceuuiereruinnereiiinneeeiiinneeennnns 33
5.2. Composing a Test Suite Using XML Configurationccceuuieieriinieieeiinneieiiineeennnn 33
7.1. Marking atest @S iNCOMPIELEcoiiiiiieii e 35
7.2, SKIPPING @ TESE ...ttt 36
7.3. Skipping test Cases USING @FEQUITESccuuuieieiiieeiiii e eee ettt et e et e e 37
9.1. The class We Want t0 SEUDcooueiii e 58
9.2. Stubbing a method call to return afixed Valuecc.ooiiiiiiiiiiiii e 59
9.3. Using the Mock Builder API can be used to configure the generated test doubleclass 59
9.4. Stubbing a method call to return one of the arguMENtSoooviviniiiiiiie e, 60
9.5. Stubbing a method call to return areference to the stub objectccoeviiiiiiiiiiiiinns. 60
9.6. Stubbing a method call to return the value fromamapccoiiiiiiiiiiiii e, 61
9.7. Stubbing a method call to return avalue from acalbackc.ccccoviiiiiiiiiiiiiieen, 61
9.8. Stubbing a method call to return alist of valuesin the specified orderccoooeeevnnnnnee. 62
9.9. Stubbing a method call to throw an exceptionccuuiveiiiiiiiiiii e 62
9.10. The Subject and Observer classes that are part of the System under Test (SUT) 63
9.11. Testing that a method gets called once and with a specified argumentcceevvnneee. 65
9.12. Testing that a method gets called with a number of arguments constrained in different

1A= £ PPN 65
9.13. Testing that a method gets called two times with specific arguments.ccceivevenenn. 66
9.14. More complex argument VENTiCaIIONuuiiiiiiiiiiiii e 66
9.15. Testing that a method gets called once and with the identical object aswas passed 67
9.16. Create a mock object with cloning parameters enabledcoooveiiiiiine, 67
9.17. Testing that a method gets called once and with a specified argumentoceevennee.. 69
9.18. Testing the concrete Methods Of A traitccovvuiiiiiiiiiie e 69
9.19. Testing the concrete methods of an abstract Classc.vvvveiiiiiiiiiiii e 70
9.20. StUbbING @ WED SEIVICE ...ei e 71
9.21. A class that interacts with the filesystem ..., 72
9.22. Testing a class that interacts with the filesystem ... 73
9.23. Mocking the filesystem in atest for a class that interacts with the filesystem 73
11.1. Using the @ odeCover agel gnor e, @odeCover agel gnoreSt art and

@odeCover agel gnor eEnd annotationsuuveiiiiiiiiiiiii e 78
11.2. Tests that specify which method they want to COVErcoiiiiiiiiiiiiii e 79

viii

PHPUnit Manua

11.3. A test that specifies that no method should be coveredcooooiiiiiiiiiiiin, 80
SRR 81
14.1. The assertTrue() and isTrue() methods of the PHPUnNit_Framework_Assert class 87
14.2. The PHPUnit_Framework_Constraint_ISTrue Classcocvuiiiiiieiiiiiiiii e eeiieens 88
14.3. A SIMPIE tESE HISIENEr ..oen i e e 88
14.4. USING baSE tESt [ISIENEN ..uiiiie e e 89
14.5. The RepeatedTESt DECOIGIONcvvueiiieeii e et et e e e e e e e e e e e e et e et eeeaeaaanees 90
14.6. A datardriVEN TESE ..ovui e 91
A.L Usage of assertArrayHasKEY () ...oeevuieiinieiii e e e e e 93
A.2. Usage of assertClassHasADULE()cevniiinieiii e e 93
A.3. Usage oOf asSertArraySUDSEL() . .c.uueeeeieii e e e e e e e e e 94
A.4. Usage of assertClassHasStati CALIDULE()ovvveiiiieiii e 95
A.5. Usage Of aSSErtCONTAINS()vvvueirnieiiiieiiie et e e e e e e e e e e e e et e e e e et e e et e e eanaeeees 96
A.6. Usage Of aSSErtCONTAINS()vvvneirnieiiiieeii et e e e e e e e e e e e e e e et s e e e e et e e et e e eanaeeees 96
A.7. Usage of assertContains() With $ignoreCaseoovvuviiiiiiiiieiiiiii e 97
A.8. Usage of assertContaiNSONIY() ...cvvvuiviinieiiieeiii e e e e e e e e e e e e aanaees 98
A.9. Usage of assertContainsOnlyINstancesSOf()ovvvviiiiiieiiii e 98
A.10. Usage Of @SSETCOUNT() «ovvuuerrneiiiieiii et e e st e e e e e eanaeeeen 99
A.11. Usage of aSSEMEMPLY() «vvuevrrieiieiiii i e e e e e e e e 100
A.12. Usage of assertEQUalXMLSITUCIUIE()uneivnieii e e e e e 100
A.13. Usage of aSSErEQUAIS() ..vunivrreiiiieiiii e 102
A.14. Usage of assertEquals() With floatsccuuviiiiiiiii e 103
A.15. Usage of assertEquals() with DOMDocument ObjECESccvvvneiiiiieiiiiei e, 104
A.16. Usage of assertEquals() With ObJECESuiiiiiiiiicie e 105
A.17. Usage of assertEqQuals() WIith arrayscouieiiiiciie e 106
A.18. Usage Of @SSEITFAlSE() .uuovveiiiiiieii e 106
A.19. Usage of asSertFIEEQUAIS() ...uovvvnieiiieiieeii e e e e e e e e e e e e e e e e e e 107
A.20. Usage of aSSErtFIIEEXISIS() «vuuevrneeinieiii e e et e e e e e e e e e e e e e aens 108
A.21. Usage of assertGreater Than()vvveeiii e e e e e 108
A.22. Usage of assertGreaterThanOrEQUEI() ... cvvvreivieiiii e e e e e e e 109
A.23. Usage of assertInfinite()couuiiiiiiiiiieie e 110
A.24. Usage of assertiNStanCeOfN ()cvvueiiiieiii e 111
A.25. Usage of assertiNterNal TYPE() «..vvvneiiiieiiiieeie e e e e e e e 111
A.26. Usage of assertJsonFileEqualSISONFIIE()ccvuiiiiiiiii e 112
A.27. Usage of assertJsonStringEqualSISONFITE()vveviveiiiiii e, 113
A.28. Usage of assertJsonStringEqualSISoNStNg()vuvevneveiieiiieei e e e e e 113
A.29. Usage of assertLesSThaN() ..v..cvveeiiiieiii et e e e 114
A.30. Usage of assertLessThanOrEqUal()coveeiiiiieiie e 115
A.31. Usage Of @SSEITNGN() ..ovvuiiiiii i e 115
A.32. Usage of @SSErtNUI() .ovueieiieie e e e e 116
A.33. Usage of assertObjectHasAHIHDBULE()ccoviiiiii e 117
A.34. Usage of aSSEREGEXP() «.vuverneiiieiiiei et 117
A.35. Usage of assertStringMatchesSFOrmat()oovvveeiiiiiiiieeiie i e e e e e e 118
A.36. Usage of assertStringMatchesFormatFile()coovvviiiiiiii i, 119
A.37. Usage Of @SSEMSAME() ...ivveiiiiieiii e e e e e 120
A.38. Usage of assertSame() with 0bjectsovviiiiiii i, 120
A.39. Usage of assertStringENdSWIth()couviiin i e 121
A.40. Usage of assertStringEqQUalSFIIE()ovvvniiieci e 122
A.41. Usage of assertStringStartSWith()ovevneiiiiii e 122
A.42. Usage Of @SSEMTNAL() ...evvvneeeiieii e e e e e e 123
A.43. USAQE Of @SSEIMTTTUE() «ovunerrneiii i e et et e e e et e e e e e e e e e et e e et e e et e e e eeaens 125
A.44. Usage of assertXmIFIleEqualsSXMIFIE()covniiiiiiiiii e, 126
A.45. Usage of assertXmIStringEqual SXMIFITE() ...covveviniii e, 127
A.46. Usage of assertXmlStringEqualsSXmISting()ovvvneviiiiiiiiiei e, 128
B.1. Using @coversDefaultClass to shorten annotationsccocvvveiiiieiiiieeiin e, 133

Chapter 1. Installing PHPUnNIt

Requirements

PHPUnNIt 5.4 requires PHP 5.6; using the latest version of PHP is highly recommended.

PHPUnNIt requires the dom [http://php.net/manual/en/dom.setup.php] and json [http://php.net/manu-
al/en/json.installation.php] extensions, which are normally enabled by default.

PHPUnNIt also requires the pcre [http://php.net/manual/en/pcre.installation.php], reflection [http://
php.net/manual/en/reflection.installation.php], and spl [http://php.net/manual/en/spl.installation.php]
extensions. These standard extensions are enabled by default and cannot be disabled without patching
PHP's build system and/or C sources.

Thecode coveragereport feature requiresthe Xdebug [http://xdebug.org/] (2.2.1 or later) and tokeni zer
[http://php.net/manual/en/tokeni zer.install ation.php] extensions. Generating XML reportsrequiresthe
xmlwriter [http://php.net/manual/en/xmlwriter.installation.php] extension.

PHP Archive (PHAR)

The easiest way to obtain PHPUnit isto download a PHP Archive (PHAR) [http://php.net/phar] that
has al required (as well as some optional) dependencies of PHPUnit bundled in asingle file.

The phar [http://php.net/manual/en/phar.installation.php] extension is required for using PHP
Archives (PHAR).

The openssl [http://php.net/manual/en/openss|.installation.php] extension isrequired for using the - -
sel f - updat e feature of the PHAR.

If the Suhosin [http://suhosin.org/] extension is enabled, you need to allow execution of PHARS in
your php. i ni :

suhosi n. execut or. i ncl ude. whitelist = phar
To globaly install the PHAR:

$ wget https://phar. phpunit.de/ phpunit. phar

$ chnod +x phpunit. phar

$ sudo nv phpunit.phar /usr/local/bin/phpunit

$ phpunit --version

PHPUnit Xx.y.z by Sebastian Bergmann and contri butors.

Y ou may aso use the downloaded PHAR file directly:

$ wget https://phar. phpunit.de/ phpunit. phar
$ php phpunit.phar --version
PHPUni t x.y.z by Sebastian Bergmann and contri butors.

Windows

Globally installing the PHAR involves the same procedure as manually installing Composer on Win-
dows [https://getcomposer.org/doc/00-intro.md#instal l ation-windows):

1. Create adirectory for PHP binaries; e.g., C: \ bi n

2. Append ; C:\ bi n to your PATH environment variable (related help [http://stackoverflow.com/
guestions/6318156/adding-python-path-on-windows-7])

http://php.net/manual/en/dom.setup.php
http://php.net/manual/en/dom.setup.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/pcre.installation.php
http://php.net/manual/en/pcre.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/spl.installation.php
http://php.net/manual/en/spl.installation.php
http://xdebug.org/
http://xdebug.org/
http://php.net/manual/en/tokenizer.installation.php
http://php.net/manual/en/tokenizer.installation.php
http://php.net/manual/en/xmlwriter.installation.php
http://php.net/manual/en/xmlwriter.installation.php
http://php.net/phar
http://php.net/phar
http://php.net/manual/en/phar.installation.php
http://php.net/manual/en/phar.installation.php
http://php.net/manual/en/openssl.installation.php
http://php.net/manual/en/openssl.installation.php
http://suhosin.org/
http://suhosin.org/
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-windows
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7

Installing PHPUnNit

3. Download https://phar.phpunit.de/phpunit.phar and save thefileas C: \ bi n\ phpuni t. phar
4. Open acommand line (e.g., press Windows+R » type cnd » ENTER)

5. Create awrapping batch script (resultsin C: \ bi n\ phpuni t . cnd):

C. \ Users\username> cd C.\bin
C.\bi n> echo @hp "%-dpOphpuni t.phar" % > phpunit.cnd
C\bin> exit

6. Open anew command line and confirm that you can execute PHPUnit from any path:

C.\ User s\ user name> phpunit --version
PHPUnit x.y.z by Sebastian Bergmann and contri butors.

For Cygwin and/or MingW32 (e.g., TortoiseGit) shell environments, you may skip step 5. above,
simply save the file as phpuni t (without . phar extension), and make it executable via chnod
775 phpunit.

Verifying PHPUnit PHAR Releases

All official releases of code distributed by the PHPUniIt Project are signed by the release manager for
therelease. PGP signatures and SHA 1 hashes are available for verification on phar.phpunit.de [https://
phar.phpunit.de/].

The following example details how release verification works. We start by downloading
phpuni t . phar aswell asits detached PGP signature phpuni t . phar . asc:

wget https://phar. phpunit.de/ phpunit. phar
wget https://phar. phpunit.de/ phpunit.phar.asc

We want to verify PHPUnit's PHP Archive (phpuni t. phar) against its detached signature
(phpuni t. phar. asc):

gpg phpunit. phar. asc
gpg: Signature nmade Sat 19 Jul 2014 01:28:02 PM CEST using RSA key | D 6372C20A
gpg: Can't check signature: public key not found

We don't have the rel ease manager's public key (6372C20A) in our local system. In order to proceed
with the verification we need to retrieve the rel ease manager's public key from a key server. One such
server ispgp. uni - nai nz. de. The public key servers are linked together, so you should be able
to connect to any key server.

gpg --keyserver pgp.uni-nainz.de --recv-keys 0x4AA394086372C20A

gpg: requesting key 6372C20A from hkp server pgp.uni-nmai nz. de

gpg: key 6372C20A: public key "Sebastian Bergnann <sb@ebasti an- bergmann. de>" i nported
gpg: Total nunber processed: 1

apg: inmported: 1 (RSA: 1)

Now we have received a public key for an entity known as "Sebastian Bergmann <sb@sebastian-
bergmann.de>". However, we have no way of verifying this key was created by the person known as
Sebastian Bergmann. But, let's try to verify the release signature again.

gpg phpunit. phar. asc
gpg: Signature nmade Sat 19 Jul 2014 01:28:02 PM CEST using RSA key | D 6372C20A
gpg: Good signature from "Sebasti an Bergnmann <sb@ebasti an- ber gnann. de>"

gpg: aka "Sebastian Bergmann <sebasti an@hp. net >"

gpg: aka "Sebastian Bergmann <sebasti an@ hephp. cc>"

gpg: aka "Sebastian Bergmann <sebasti an@hpunit. de>"

gpg: aka "Sebasti an Bergmann <sebasti an. ber gmann@ hephp. cc>"

https://phar.phpunit.de/phpunit.phar
https://phar.phpunit.de/
https://phar.phpunit.de/
https://phar.phpunit.de/

Installing PHPUnNit

apg: aka "[j peg image of size 40635]"
gpg: WARNING This key is not certified with a trusted signature!
apg: There is no indication that the signature bel ongs to the owner.

Primary key fingerprint: D840 6D0OD 8294 7747 2937 7831 4AA3 9408 6372 C20A

At thispoint, the signatureis good, but we don't trust thiskey. A good signature meansthat thefile has
not been tampered. However, due to the nature of public key cryptography, you need to additionally
verify that key 6372C20A was created by the real Sebastian Bergmann.

Any attacker can create a public key and upload it to the public key servers. They can then create
amalicious release signed by this fake key. Then, if you tried to verify the signature of this corrupt
release, it would succeed because the key was not the "rea” key. Therefore, you need to validate the
authenticity of this key. Validating the authenticity of a public key, however, is outside the scope of
this documentation.

It may be prudent to create a shell script to manage PHPUnit installation that verifies the GnuPG
signature before running your test suite. For example:

#!1 / usr/ bi n/ env bash
clean=1 # Del ete phpunit.phar after the tests are conpl ete?
af tercnd="php phpunit. phar --bootstrap bootstrap.php src/tests"
gpg --fingerprint D8406D0D82947747293778314AA394086372C20A
if [$2 -ne 0]; then
echo -e "\ 033[33nmDownl oadi ng PGP Public Key...\033[0Ont
gpg --recv-keys D8406D0D82947747293778314AA394086372C20A
Sebastian Bergmann <sb@ebasti an- ber gnann. de>
gpg --fingerprint D8406D0D82947747293778314AA394086372C20A
if [$2 -ne 0]; then
echo -e "\ 033[31nCoul d not downl oad PGP public key for verification\033[0ni
exit
f
f

if ["$clean" -eq 1]; then
Let's clean themup, if they exist
if [-f phpunit.phar]; then
rm -f phpunit. phar
f
if [-f phpunit.phar.asc]; then
rm-f phpunit.phar.asc
f
f

Let's grab the latest release and its signature
if [! -f phpunit.phar]; then

wget https://phar. phpunit.de/phpunit.phar
fi
if [! -f phpunit.phar.asc]; then

wget https://phar. phpunit.de/phpunit.phar.asc
fi

Verify before running
gpg --verify phpunit.phar.asc phpunit. phar
if [$?2 -eq 0]; then
echo
echo -e "\ 033[33nBegin Unit Testing\033[Ont
Run the testing suite
“$after_cnd’
C eanup
if ["$clean" -eq 1]; then
echo -e "\033[32nCl eani ng Up!\ 033[On{
rm -f phpunit. phar
rm-f phpunit.phar.asc

Installing PHPUnNit

f
el se
echo
chnod -x phpunit. phar
mv phpuni t. phar /tnp/bad-phpunit. phar
mv phpuni t. phar.asc /tnp/ bad- phpunit. phar. asc
echo -e "\ 033[31nti gnature did not match! PHPUnit has been noved to /tnp/bad-phpunit
exit 1
f

Composer

Simply add adependency onphpuni t / phpuni t toyour project'sconposer . j son fileif youuse
Composer [https://getcomposer.org/] to manage the dependencies of your project. Here isaminimal
example of aconposer . j son file that just defines a devel opment-time dependency on PHPUnNit

54
{
"require-dev": {
"“phpuni t/phpunit": "5.4.*"
}
}

For a system-wide installation via Composer, you can run:
conposer gl obal require "phpunit/phpunit=5. 4. *"

Make sure you have ~/ . conposer/ vendor / bi n/ inyour path.

Optional packages
The following optional packages are available:

PHP_I nvoker A utility classfor invoking callableswith atimeout. This pack-
ageisrequired to enforce test timeouts in strict mode.

This packageisincluded in the PHAR distribution of PHPUnit.
It can beinstalled via Composer by adding thefollowing " r e-
qui re- dev" dependency:

"phpuni t/ php-invoker": "*"

DbUni t DbUnit port for PHP/PHPUnIt to support database interaction
testing.

This packageisincluded in the PHAR distribution of PHPUnit.
It can beinstalled via Composer by adding thefollowing " r e-
qui re- dev" dependency:

"phpuni t/dbunit": ">=1.2"

https://getcomposer.org/
https://getcomposer.org/

Chapter 2. Writing Tests for PHPUnit

Example 2.1, “Testing array operations with PHPUnit” shows how we can write tests using PHPUnit
that exercise PHP's array operations. The example introduces the basic conventions and steps for
writing tests with PHPUnit:

1. Thetestsfor aclassC ass gointoaclassCl assTest.
2. O assTest inherits (most of the time) from phpuni t\ f r anewor k\ Test Case.
3. Thetests are public methods that are named t est *.
Alternatively, you can usethe @ est annotation in amethod's docblock to mark it asatest method.

4. Inside the test methods, assertion methods such asassert Equal s() (see Appendix A, Asser-
tions) are used to assert that an actual value matches an expected value.

Example 2.1. Testing array operations with PHPUnit

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass StackTest extends Test Case

{
public function testPushAndPop()

{
$stack = [];
$t hi s- >assert Equal s(0, count ($stack));

array_push($stack, 'foo');
$t hi s- >assert Equal s(' foo', $stack[count ($stack)-1]);
$t hi s- >assert Equal s(1, count ($stack));

$t hi s- >assert Equal s(' foo', array_pop($stack));
$t hi s- >assert Equal s(0, count ($stack));

Whenever you are tempted to type something intoapr i nt statement or adebugger
expression, write it as atest instead.
—Martin Fowler

Test Dependencies

Unit Tests are primarily written as a good practice to help developers identify and
fix bugs, to refactor code and to serve as documentation for aunit of software under
test. To achievethese benefits, unit testsideally should cover al the possible pathsin
aprogram. One unit test usually covers one specific path in one function or method.
However atest method is not necessary an encapsulated, independent entity. Often
there areimplicit dependencies between test methods, hidden in the implementation
scenario of atest.

—Adrian Kuhn et. al.

PHPUnNIt supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of an
instance of the test fixture by a producer and passing it to the dependent consumers.

Writing Tests for PHPUnNit

» A producer is atest method that yields its unit under test as return value.
» A consumer isatest method that depends on one or more producers and their return values.

Example 2.2, “Using the @lepends annotation to express dependencies’ shows how to use the
@lepends annotation to express dependencies between test methods.

Example 2.2. Using the @ epends annotation to express dependencies

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass StackTest extends Test Case

{
public function testEnpty()
{
$stack = [];
$t hi s- >assert Enpt y($st ack) ;
return $stack;
}
public function testPush(array $stack)
{
array_push($stack, 'foo')
$t hi s- >assert Equal s(' foo', $stack[count ($stack)-1]);
$t hi s- >assert Not Enpt y($st ack) ;
return $stack;
}
public function testPop(array $stack)
{
$t hi s- >assert Equal s(' foo', array_pop($stack));
$t hi s- >assert Enpt y($st ack) ;
}
}
?>

In the example above, thefirst test, t est Enpt y () , creates anew array and asserts that it is empty.
Thetest then returnsthe fixture asitsresult. The second test, t est Push() , dependsont est Enp-
ty() and is passed the result of that depended-upon test asits argument. Finaly, t est Pop() de-
pendsupont est Push() .

Note

The return value yielded by a producer is passed "as-is' to its consumers by default. This
means that when a producer returns an object a reference to that object is passed to the con-
sumers. When a copy should be used instead of areference then @epends cl one should
be used instead of @lepends.

To quickly localize defects, we want our attention to be focussed on relevant failing tests. Thisiswhy
PHPUnNIt skips the execution of a test when a depended-upon test has failed. This improves defect
localization by exploiting the dependencies between tests as shown in Example 2.3, “Exploiting the
dependencies between tests”.

Writing Tests for PHPUnNit

Example 2.3. Exploiting the dependencies between tests

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass DependencyFai |l ureTest extends Test Case

{
public function testOne()
{
$t hi s- >assert True(fal se);
}
public function testTwo()
{
}
}
?>

phpunit --verbose DependencyFai |l ureTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

FS
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) DependencyFai |l ureTest: :test One
Fai |l ed asserting that false is true.

/ hone/ sb/ DependencyFai | ur eTest . php: 6
There was 1 skipped test:

1) DependencyFai |l ureTest: :test Two
This test depends on "DependencyFail ureTest::testOne" to pass.

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1, Skipped: 1.

A test may have more than one @ epends annotation. PHPUnit does not change the order in which
tests are executed, you have to ensure that the dependencies of atest can actually be met before the
testisrun.

A test that has more than one @lepends annotation will get a fixture from the first producer as the
first argument, afixture from the second producer asthe second argument, and so on. See Example 2.4,
“Test with multiple dependencies’

Example 2.4. Test with multiple dependencies

<?php
use PHPUnI t\ Framewor k\ Test Case

class Miultipl eDependenci esTest extends Test Case

{

public function testProducerFirst()

{

$t hi s- >assert True(true);

Writing Tests for PHPUnNit

return 'first';

}
public function testProducer Second()
{
$t hi s- >assert True(true);
return 'second';
}

public function testConsuner ()

{
$t hi s- >assert Equal s(
["first', 'second'],
func_get _args()
)
}
}
?>

phpunit --verbose Milti pl eDependenci esTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

Time: 0 seconds, Menory: 3.25M

K (3 tests, 3 assertions)

Data Providers

A test method can accept arbitrary arguments. These arguments are to be provided by a data provider
method (addi ti onProvi der () in Example 2.5, “Using a data provider that returns an array of
arrays’). The data provider method to be used is specified using the @lat aPr ovi der annotation.

A data provider method must be publ i ¢ and either return an array of arrays or an object that imple-

mentsthel t er at or interface and yields an array for each iteration step. For each array that is part
of the collection the test method will be called with the contents of the array as its arguments.

Example 2.5. Using a data provider that returnsan array of arrays

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Dat aTest extends Test Case

{

public function testAdd($a, $b, $expected)

{
$t hi s- >assert Equal s($expected, $a + $b);
}
public function additionProvider()
{
return [
[0, O, O],

Writing Tests for PHPUnNit

}

?>

phpuni t Dat aTest
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

.F
Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Fai |l ed asserting that 2 matches expected 3.

/ hone/ sb/ Dat aTest . php: 9

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

When using alarge number of datasetsit's useful to name each one with string key instead of default
numeric. Output will be more verbose asit'll contain that name of a dataset that breaks a test.

Example 2.6. Using a data provider with named datasets

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Dat aTest extends Test Case

{
public function testAdd($a, $b, $expected)
{
$t hi s- >assert Equal s($expected, $a + $b);
}
public function additionProvider()
{
return [
‘adding zeros' => [0, 0, 0],
‘zero plus one' => [0, 1, 1],
‘one plus zero' =>[1, 0, 1],
‘one plus one' => 11, 1, 3]
I
}
}
?>

phpunit Dat aTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

.F
Time: 0 seconds, Menory: 5.75M

There was 1 failure:

Writing Tests for PHPUnNit

1) DataTest::testAdd with data set "one plus one" (1, 1, 3)
Fai |l ed asserting that 2 matches expected 3.

/ home/ sb/ Dat aTest . php: 9

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.7. Using a data provider that returnsan Iterator object

<?php
use PHPUnI t\ Framewor k\ Test Case;

require 'CsvFilelterator. php';

cl ass Dat aTest extends Test Case

{
public function testAdd($a, $b, $expected)
{
$t hi s- >assert Equal s($expected, $a + $b);
}
public function additionProvider()
{
return new CsvFilelterator (' data.csv');
}
}
?>

phpunit Dat aTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

.F
Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) DataTest::testAdd with data set #3 ('1', '"1', '3")
Fai |l ed asserting that 2 matches expected '3'.

/ home/ sb/ Dat aTest . php: 11

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.8. The CsvFilelterator class

<?php
use PHPUnI t\ Framewor k\ Test Case;

class CsvFilelterator inplenents Iterator {
protected $file;
protected $key = 0;
protected $current;

public function __construct($file) {
$this->file = fopen($file, 'r');

10

Writing Tests for PHPUnNit

}

public function __destruct() {
fclose($this->file);
}

public function rew nd() {
rewi nd($this->file);
$t his->current = fgetcsv($this->file);
$t hi s- >key = 0;

}

public function valid() {
return !feof ($this->file);

}

public function key() {
return $this->key;
}

public function current() {
return $this->current

}

public function next() {
$t his->current = fgetcsv($this->file);
$t hi s- >key++;

}

?>

When a test receives input from both a @lat aPr ovi der method and from one or more tests it
@lepends on, the arguments from the data provider will come before the ones from depended-upon
tests. The arguments from depended-upon tests will be the same for each data set. See Example 2.9,
“Combination of @depends and @dataProvider in same test”

Example 2.9. Combination of @depends and @dataProvider in sametest

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass DependencyAndDat aPr ovi der ComboTest extends Test Case
{

public function provider()

{

return [["provider1l'], ['provider2']]
}
public function testProducerFirst()
{

$t hi s- >assert True(true);

return 'first';
}
public function testProducerSecond()
{

$t hi s- >assert True(true);

return 'second'
}

11

Writing Tests for PHPUnNit

public function testConsuner ()

{
$t hi s- >assert Equal s(
["provider1l, 'first', '"second'],
func_get _args()
)
}
}
?>

phpunit --verbose DependencyAndDat aProvi der ConboTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

.F
Time: 0 seconds, Menory: 3.50M
There was 1 failure:

1) DependencyAndDat aProvi der ConboTest : :test Consuner with data set #1 (' provider2')
Fai l ed asserting that two arrays are equal .

--- Expected

+++ Act ual

@@ @@

Array (

- 0 => 'provider1

+ 0 => 'provider?2'

1 =>"first'

2 => 'second'

)

/ home/ sb/ DependencyAndDat aPr ovi der ConboTest . php: 31

FAI LURES!
Tests: 4, Assertions: 4, Failures: 1.

Note

When atest depends on atest that uses data providers, the depending test will be executed
when the test it depends upon is successful for at least one data set. The result of atest that
uses data providers cannot be injected into a depending test.

Note
All data providers are executed before both the call to the set UpBef or ed ass static
method and thefirst call totheset Up method. Because of that you can't accessany variables

you create there from within adata provider. Thisisrequired in order for PHPUnit to be able
to compute the total number of tests.

Testing Exceptions

Example2.10, “ Using the expectException() method” showshow to usetheexpect Except i on()
method to test whether an exception is thrown by the code under test.

Example 2.10. Using the expectException() method

<?php
use PHPUnI t\ Framewor k\ Test Case;

12

Writing Tests for PHPUnNit

cl ass ExceptionTest extends Test Case

{
public function testException()
{
$t hi s- >expect Excepti on(I nval i dAr gument Excepti on: : cl ass);
}
}
?>

phpunit ExceptionTest
PHPUni t 5.4.0 by Sebastian Bergmann and contri butors.

F
Tinme: 0 seconds, Menory: 4.75M
There was 1 failure:

1) ExceptionTest::testException
Expect ed exception | nvali dArgunent Excepti on

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

In addition to the expect Excepti on() method the expect Excepti onCode(), ex-
pect Excepti onMessage(), and expect Except i onMessageRegExp() methods exist to
set up expectations for exceptions raised by the code under test.

Alternatively, you can use the @xpect edExcepti on, @xpect edExcept i onCode, @Xx-
pect edExcepti onMessage, and @xpect edExcepti onMessageRegExp annotations to
set up expectations for exceptions raised by the code under test. Example 2.11, “Using the @expect-
edException annotation” shows an example.

Example 2.11. Using the @expectedException annotation

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass ExceptionTest extends Test Case

{
public function testException()
{
}

}

?>

phpunit ExceptionTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) ExceptionTest::testException
Expect ed exception | nvali dArgunent Excepti on

13

Writing Tests for PHPUnNit

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

Testing PHP Errors

By default, PHPUnit converts PHP errors, warnings, and notices that are triggered during the
execution of a test to an exception. Using these exceptions, you can, for instance, expect a test to
trigger a PHP error as shown in Example 2.12, “ Expecting a PHP error using @expectedException”.

Note

PHP'ser r or _repor ti ng runtime configuration can limit which errors PHPUnit will con-
vert to exceptions. If you are having issues with this feature, be sure PHP is not configured
to suppress the type of errors you're testing.

Example 2.12. Expecting a PHP error using @expectedException

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass ExpectedErrorTest extends Test Case

{
public function testFailinglnclude()
{
i nclude 'not_existing_file.php';
}
}
?>

phpunit -d error_reporti ng=2 Expect edError Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

Time: 0 seconds, Menory: 5.25M

OK (1 test, 1 assertion)

PHPUni t _Framewor k_Error_Notice and PHPUni t _Framewor k_Error _War ni ng
represent PHP notices and warnings, respectively.

Note

Y ou should be as specific as possible when testing exceptions. Testing for classesthat aretoo
generic might lead to undesirable side-effects. Accordingly, testing for theExcept i on class
with @xpect edExcepti on or set Expect edExcept i on() isnolonger permitted.

When testing that relies on php functionsthat trigger errorslikef open it can sometimes be useful to
use error suppression while testing. This allowsyou to check the return values by suppressing notices
that would lead to a phpunit PHPUni t _Fr amewor k_Error _Noti ce.

Example 2.13. Testing return values of codethat usesPHP Errors

<?php
use PHPUnI t\ Framewor k\ Test Case;

14

Writing Tests for PHPUnNit

cl ass ErrorSuppressi onTest extends Test Case

{
public function testFileWiting() {

$witer = new FileWiter;

$t hi s->assertFal se(@witer->wite('/is-not-witeable/file , 'stuff'));
}
class FileWiter
{
public function wite($file, $content) {
$file = fopen($file, "W);
if($file == false) {
return false;
}
}
}
?>

phpuni t Error Suppressi onTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

Time: 1 seconds, Menory: 5.25M

K (1 test, 1 assertion)

Without the error suppression the test would fail reporting fopen(/is-not-wite-
able/file): failed to open stream No such file or directory.

Testing Output

Sometimes you want to assert that the execution of amethod, for instance, generates an expected out-
put (viaecho or pri nt, for example). Thephpuni t\ f r amewor k\ Test Case class uses PHP's
Output Buffering [http://www.php.net/manual/en/ref .outcontrol .php] feature to provide the function-
ality that is necessary for this.

Example 2.14, “Testing the output of a function or method” shows how to use the expect Qut -
put St ri ng() method to set the expected output. If this expected output is not generated, the test
will be counted as afailure.

Example 2.14. Testing the output of a function or method

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Qutput Test extends Test Case

{

public function testExpect FooAct ual Foo()

{
$t hi s- >expect Qut put String(' foo');
print 'foo';

}

public function testExpectBarActual Baz()

{
$t hi s- >expect Qut put String(' bar');
print 'baz';

}

15

http://www.php.net/manual/en/ref.outcontrol.php
http://www.php.net/manual/en/ref.outcontrol.php

Writing Tests for PHPUnNit

}

?>

phpuni t Cut put Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

.F

Time: 0 seconds, Menory: 5.75M

There was 1 failure:

1) CQutput Test::test Expect Bar Act ual Baz

Fai |l ed asserting that two strings are equal .

--- Expected
+++ Act ual

@@ @@
- ' bar’
+' baz'

FAl LURES!
Tests: 2, Assertions: 2, Failures: 1.

Table 2.1, “Methods for testing output” shows the methods provided for testing output

Table2.1. Methods for testing output

M ethod Meaning
voi d expect Qut put Regex(string Set up the expectation that the output matches a
$regul ar Expr essi on) $regul ar Expr essi on.
voi d expectQut put String(string Set up the expectation that the output is equal to
$expect edStri ng) an $expect edSt ri ng.
bool setQut put Cal | back(cal |l abl e |Setsup acallback that isused to, for instance,
$cal | back) normalize the actual output.

Note

A test that emits output will fail in strict mode.

Error output

Whenever atest fails PHPUnit tries its best to provide you with as much context as possible that can
help to identify the problem.

Example 2.15. Error output generated when an array comparison fails

<?php
use PHPUnI t\ Framewor k\ Test Case;

class ArrayDi ffTest extends Test Case

{
public function testEquality() {
$t hi s- >assert Equal s(
[1, 2, 3, 4, 5 6],
[1, 2, 33, 4, 5, 6]
)
}
}

16

Writing Tests for PHPUnNit

?>

phpunit ArrayDiff Test
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) ArrayDiffTest::testEquality

Fai |l ed asserting that two arrays are equal.
--- Expected

+++ Act ual
@@ @@
Array (
=>
=>
=>
=>
=>
=>
=>

+
ah~rwWNNEFEO
OO WWN P

w

)

/ hone/ sb/ ArrayDi f f Test. php: 7

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example only one of the array values differs and the other values are shown to provide context
on where the error occurred.

When the generated output would be long to read PHPUnit will split it up and provide a few lines of
context around every difference.

Example 2.16. Error output when an array comparison of an long array fails

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass LongArrayDi ffTest extends Test Case

{
public function testEquality() {
$t hi s- >asser t Equal s(
[0, OO OO O, Ob Ob Ob Ob O, O O, O, 1, 2, 3 4,5 6],
[0, OO OO O, Ob O, Ob O O, O, Ob O 1, 2, 33, 4 5, 6]
I
}
}
?>

phpunit LongArrayDiff Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M

There was 1 failure:

17

Writing Tests for PHPUnNit

1) LongArrayDiffTest::testEquality
Fai l ed asserting that two arrays are equal
--- Expected
+++ Act ual
@@ @@
13 =>
- 14 =>
o 14 =>
15 =>
16 =>
17 =>

OO0 WWN

/ home/ sb/ LongArrayDi f f Test. php: 7

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

Edge cases

When a comparison fails PHPUnNit creates textual representations of the input values and compares
those. Due to that implementation a diff might show more problems than actually exist.

This only happens when using assertEqual s or other ‘weak' comparison functions on arrays or objects.

Example 2.17. Edge casein the diff generation when using weak comparison

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass ArrayWakConpari sonTest extends Test Case

{
public function testEquality() {
$t hi s- >assert Equal s(
[1, 2, 3, 4, 5 6#6],
[*1', 2, 33, 4, 5, 6]
)
}
}
?>

phpunit ArrayWakConpari sonTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) ArrayWeakConparisonTest::testEquality
Fai l ed asserting that two arrays are equal

--- Expected

+++ Actua

@ @@

Array (

- 0 =>1

+ 0=>"1
1 =2

- 2 => 3

+ 2 => 33

18

Writing Tests for PHPUnNit

=> 4
=> 5
=> 6

g b~ w

/ home/ sb/ Ar r ayWeakConpari sonTest . php: 7

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example the difference in the first index between 1 and ' 1' isreported even though assertE-
guals considers the values as a match.

19

Chapter 3. The Command-Line Test
Runner

The PHPUnNIit command-line test runner can be invoked through the phpuni t command. The fol-
lowing code shows how to run tests with the PHPUNit command-line test runner:

phpunit ArrayTest
PHPUNit 5.4.0 by Sebastian Bergmann and contri butors.

Time: 0 seconds

OK (2 tests, 2 assertions)

When invoked as shown above, the PHPUnit command-line test runner will look for a
ArrayTest . php sourcefile in the current working directory, load it, and expect to find a Ar -
rayTest test caseclass. It will then execute the tests of that class.

For each test run, the PHPUnNit command-line tool prints one character to indicate progress:
Printed when the test succeeds.

Printed when an assertion fails while running the test method.

Printed when an error occurs while running the test method.

Printed when the test has been marked as risky (see Chapter 6, Risky Tests).

»w v m T

Printed when the test has been skipped (see Chapter 7, Incomplete and Skipped Tests).

| Printed when the test is marked as being incomplete or not yet implemented (see Chapter 7, In-
complete and Skipped Tests).

PHPUnNit distinguishes between failures and errors. A failure is a violated PHPUnit assertion such
asafailingassert Equal s() call. Anerror isan unexpected exception or a PHP error. Sometimes
this distinction proves useful since errorstend to be easier to fix than failures. If you have abig list of
problems, it isbest to tackle the errorsfirst and seeif you have any failuresleft when they areall fixed.

Command-Line Options

Let'stake alook at the command-line test runner's options in the following code:

phpunit --help
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

Usage: phpunit [options] UnitTest [UnitTest. php]
phpunit [options] <directory>

Code Coverage Options:

--coverage-clover <file> GCenerate code coverage report in Cl over XM. fornat.
--coverage-crap4j <file> GCenerate code coverage report in Crap4J XM fornat.

--coverage-htm <dir> Generate code coverage report in HTM fornat.
--coverage- php <file> Export PHP_CodeCoverage object to file.
--coverage-text=<fil e> Generate code coverage report in text format.

Def aul t: Standard out put.
--coverage-xm <dir> Generate code coverage report in PHPUnit XM. fornat.

20

The Command-Line Test Runner

Loggi ng Opti ons:

--log-junit <file>
--log-tap <file>
--log-json <file>
--testdox-htm <file>
--testdox-text <file>

Test Sel ection Options:

--filter <pattern>
--testsuite <pattern>
--group ...

--excl ude-group ...
--list-groups
--test-suffix ..

Test Execution Options:

--report-usel ess-tests
--strict-coverage
--strict-global -state
--di sal | owt est - out put
--enforce-tinme-limt
--di sall owtodo-tests

--process-isol ation
- - no- gl obal s- backup
--static-backup

--col ors=<fl ag>
--col ums <n>
--col ums nax
--stderr
--stop-on-error
--stop-on-failure
--stop-on-risky

- - st op- on- ski pped
--stop-on-inconpl ete
-V|--verbose

- - debug

--| oader <I oader>
--repeat <tines>
--tap

- -t est dox

--printer <printer>

Configuration Options:

--bootstrap <file>
-c|--configuration <file>
--no-configuration
--include-path <path(s)>
-d key[=val ue]

M scel | aneous Opti ons:

-h| --hel p
--version

Log test execution in JUnit XM. format to file
Log test execution in TAP format to file.

Log test execution in JSON fornat.

Wite agile docunentation in HTM. format to file.
Wite agile docunentation in Text format to file.

Filter which tests to run.

Filter which testsuite to run

Only runs tests fromthe specified group(s).
Excl ude tests fromthe specified group(s).
Li st avail abl e test groups.

Only search for test in files with specified
suffix(es). Default: Test.php,.phpt

Be strict about tests that do not test anything.
Be strict about unintentionally covered code.

Be strict about changes to global state

Be strict about output during tests.

Enforce tine limt based on test size

Di sal | ow @ odo-annot ated tests.

Run each test in a separate PHP process.
Do not backup and restore $G.OBALS for each test.
Backup and restore static attributes for each test.

Use colors in output ("never", "auto" or "always").
Nurmber of columms to use for progress output.

Use maxi mum nunber of columms for progress output.
Wite to STDERR instead of STDOUT.

St op execution upon first error

St op execution upon first error or failure.

St op execution upon first risky test.

St op execution upon first skipped test.

St op execution upon first inconplete test.

Qut put nore verbose information.

Di spl ay debugging infornmati on during test execution.

Test Sui t eLoader inplenentation to use.

Runs the test(s) repeatedly.

Report test execution progress in TAP fornmat.
Report test execution progress in TestDox fornmat.
Test Li stener inplenentation to use.

A "bootstrap" PHP file that is run before the tests.
Read configuration from XM file.

Ignore default configuration file (phpunit.xn).
Prepend PHP's include_path with given path(s).

Sets a php.ini value

Prints this usage information.
Prints the version and exits

21

The Command-Line Test Runner

phpunit Unit Test

phpunit Unit Test
Uni t Test . php

--cover age-cl over

--cover age- cr ap4j

--coverage-htm

--cover age- php

--cover age-t ext

--log-junit
--log-tap
--log-json

--testdox-htm and- -
t est dox-t ext

--filter

Runs the tests that are provided by the class Uni t Test . This
classisexpectedtobedeclaredintheUni t Test . php source-
file

Uni t Test must be either a class that inherits from ph-
puni t\ franmewor k\ Test Case or a class that provides
apublic static suite() method which returns a
PHPUNni t _Franmewor k_Test object, for example an in-
stance of the PHPUNi t _Fr anewor k_Test Sui t e class.

Runs the tests that are provided by the class Uni t Test . This
classis expected to be declared in the specified sourcefile.

Generates alogfilein XML format with the code coverage in-
formation for the tests run. See Chapter 13, Logging for more
details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

Generates a code coverage report in Crap4j format. See Chap-
ter 11, Code Coverage Analysis for more details.

Please note that this functionality is only available when the
tokenizer and Xdebug extensions are installed.

Generates a code coverage report in HTML format. See Chap-
ter 11, Code Coverage Analysis for more details.

Please note that this functiondlity is only available when the
tokenizer and X debug extensions are installed.

Generates a serialized PHP_CodeCoverage object with the
code coverage information.

Please note that this functionality is only available when the
tokenizer and X debug extensions are installed.

Generates alogfile or command-line output in human readable
format with the code coverageinformation for thetestsrun. See
Chapter 13, Logging for more details.

Please note that this functionality is only available when the
tokenizer and X debug extensions are installed.

Generates alogfile in JUnit XML format for the tests run. See
Chapter 13, Logging for more details.

Generates a logfile using the Test Anything Protocol (TAP)
[http://testanything.org/] format for the tests run. See Chap-
ter 13, Logging for more details.

Generates alogfile using the JISON [http://www.json.org/] for-
mat. See Chapter 13, Logging for more details.

Generates agile documentation in HTML or plain text format
for the tests that are run. See Chapter 12, Other Uses for Tests
for more details.

Only runs tests whose name matches the given regular expres-
sion pattern. If the pattern is not enclosed in delimiters, PH-
PUnit will enclose the patternin/ delimiters.

22

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

The Command-Line Test Runner

Thetest namesto match will bein one of thefollowing formats:

Test Nane-

The default test name

space\ Test Cased ass: : t est Metrhad is the equiv-

Test Nane-

adent of using the
__METHOD _ magic
constant inside the test
method.

When a test has a da-

space\ Test Cased ass: : t est Matfrodder, each itera-

with data set #0

Test Nane-

tion of the data gets the
current index appended
to the end of the default
test name.

When a test has a da-

space\ Test Cased ass: : t est Mat panvider that uses

with data set "ny naned

dat a"

[path/to/ my/test. phpt

named sets, each itera-
tion of the data gets the
current name appended
to the end of the de-
fault test name. See Ex-
ample 3.1, “Named data
sets’ for an example of
named data sets.

Example8.1Named
data sets

<?php
use PHPUnNI t\ Fr amewor k\ Test Case;

nanespace Test Nanespace

cl ass Test CaseC ass extends Tes

{

public function testMethod(
{

}

$t hi s- >assert True($dat a

public function provider()

{

return [
"my naned data' =>
'ny data' =>
1
}
}
?>
The test name for a PH-
PT test isthe filesystem
path.

23

The Command-Line Test Runner

--testsuite

--group

- - excl ude- group

--list-groups
--test-suffix

--report-usel ess-tests

See Example 3.2, “Filter pattern examples’ for examples of
valid filter patterns.

Example 3.2. Filter pattern examples

e --filter ' Test Nanespace\
\ Test Cased ass: : t est Met hod'

e --filter 'TestNamespace\\ Test Cased ass'
o --filter TestNanmespace

e --filter TestCased ass

e --filter testMthod

e --filter '"/::testMethod .*"nmy nanmed da-
tall/l

o --filter '/::testMethod .*#5%/'
o --filter '/::testMethod .*#(5|6|7)$/"

See Example 3.3, “Filter shortcuts’ for some additional short-
cuts that are available for matching data providers.

Example 3.3. Filter shortcuts

o --filter 'testMethod#2'

o --filter 'testMethod#2-4'

o --filter '#2'

o --filter '#2-4

e --filter 'testMethod@y naned data'

e --filter 'testMthod@ry.*data'

e --filter "@ry naned data'

e --filter '@ry.*data’

Only runsthe test suite whose name matches the given pattern.

Only runstestsfrom the specified group(s). A test can betagged
as belonging to a group using the @r oup annotation.

The @ut hor annotation is an alias for @r oup allowing to
filter tests based on their authors.

Exclude tests from the specified group(s). A test can be tagged
as belonging to a group using the @r oup annotation.

List available test groups.
Only search for test files with specified suffix(es).

Be strict about tests that do not test anything. See Chapter 6,
Risky Tests for details.

24

The Command-Line Test Runner

--strict-coverage

--strict-global -state

--di sal | owt est - out put

--disall owtodo-tests

--enforce-tinme-limt

--process-isolation

- - no- gl obal s-backup

--static-backup

--colors

--colums

--stderr
--stop-on-error
--stop-on-failure
--stop-on-risky

- - st op- on- ski pped
--stop-on-inconpl ete

--ver bose

- -debug

Be strict about unintentionally covered code. See Chapter 6,
Risky Testsfor details.

Be strict about global state manipulation. See Chapter 6, Risky
Tests for details.

Be strict about output during tests. See Chapter 6, Risky Tests
for details.

Does not execute tests which have the @ odo annotation inits
docblock.

Enforcetimelimit based on test size. See Chapter 6, Risky Tests
for details.

Run each test in a separate PHP process.

Do not backup and restore $GLOBALS. See the section called
“Global State” for more details.

Backup and restore static attributes of user-defined classes. See
the section called “Global State” for more details.

Use colors in output. On Windows, use ANSICON [https.//
github.com/adoxa/ansicon] or ConEmu [https://github.com/
Maximuss/ConEmu].

There are three possible values for this option:

e never : never displays colors in the output. Thisis the de-
fault value when - - col or s option is not used.

« aut o: displays colors in the output unless the current ter-
minal doesn't supports colors, or if the output is piped to a
command or redirected to afile.

< al ways: alwaysdisplayscolorsintheoutput even when the
current terminal doesn't supports colors, or when the output
is piped to acommand or redirected to afile.

When - - col or s isused without any value, aut o isthe cho-

sen value.

Defines the number of columns to use for progress output. If
max is defined as value, the number of columns will be maxi-
mum of the current terminal.

Optionally print to STDERR instead of STDOUT.
Stop execution upon first error.

Stop execution upon first error or failure.

Stop execution upon first risky test.

Stop execution upon first skipped test.

Stop execution upon first incomplete test.

Output more verbose information, for instance the names of
tests that were incomplete or have been skipped.

Output debug information such as the name of atest when its
execution starts.

25

https://github.com/adoxa/ansicon
https://github.com/adoxa/ansicon
https://github.com/adoxa/ansicon
https://github.com/Maximus5/ConEmu
https://github.com/Maximus5/ConEmu
https://github.com/Maximus5/ConEmu

The Command-Line Test Runner

- -| oader

- -repeat

--tap

--testdox

--printer

--bootstrap

--configuration,-c

--no-configuration

--include-path

-d

Note

Specifiesthe PHPUni t _Runner _Test Sui t eLoader im-
plementation to use.

The standard test suite loader will look for the sourcefilein the
current working directory and in each directory that is speci-
fiedinPHP'si ncl ude_pat h configurationdirective. A class
namesuch asPr oj ect _Package_C ass is mapped to the
source filename Pr oj ect / Package/ O ass. php.

Repeatedly runs the test(s) the specified number of times.
Reports the test progress using the Test Anything Protocol
(TAP) [http://testanything.org/]. See Chapter 13, Logging for
more details.

Reports the test progress as agile documentation. See Chap-
ter 12, Other Uses for Tests for more details.

Specifies the result printer to use. The printer class
must extend PHPUni t _Uti | _Pri nt er and implement the
PHPUNi t _Franmewor k_Test Li st ener interface.

A "bootstrap" PHP file that is run before the tests.

Read configuration from XML file. See Appendix C, The XML
Configuration File for more details.

If phpunit.xm or phpunit.xmn . di st (in that order)
exist in the current working directory and - - conf i gur a-
ti on isnot used, the configuration will be automatically read
from that file.

Ignore phpuni t. xm and phpuni t. xn . di st from the
current working directory.

Prepend PHP'si ncl ude_pat h with given path(s).

Sets the value of the given PHP configuration option.

Please note that as of 4.8, options can be put after the argument(s).

26

http://testanything.org/
http://testanything.org/
http://testanything.org/

Chapter 4. Fixtures

One of the most time-consuming parts of writing tests is writing the code to set the world up in a
known state and then return it to its origina state when the test is complete. Thisknown stateis called
the fixture of the test.

In Example 2.1, “Testing array operations with PHPUnit”, the fixture was simply the array that is
stored in the $st ack variable. Most of the time, though, the fixture will be more complex than a
simple array, and the amount of code needed to set it up will grow accordingly. The actual content of
the test gets lost in the noise of setting up the fixture. This problem gets even worse when you write
several tests with similar fixtures. Without some help from the testing framework, we would have to
duplicate the code that sets up the fixture for each test we write.

PHPUnNIt supports sharing the setup code. Before a test method is run, a template method called
set Up() isinvoked. set Up() iswhere you create the objects against which you will test. Once
the test method has finished running, whether it succeeded or failed, another template method called
t ear Down() isinvoked.t ear Down() iswhereyou clean up the objects against which you tested.

In Example 2.2, “Using the @lepends annotation to express dependencies’ we used the produc-
er-consumer relationship between tests to share afixture. Thisis not always desired or even possible.
Example 4.1, “Using setUp() to create the stack fixture” shows how we can write the tests of the
St ackTest insuch away that not the fixtureitself isreused but the code that createsit. First we de-
claretheinstance variable, $st ack, that we are going to use instead of amethod-local variable. Then
weput the creation of thear r ay fixtureintotheset Up() method. Finally, we removethe redundant
code from the test methods and use the newly introduced instance variable, $t hi s- >st ack, instead
of the method-local variable $st ack withtheassert Equal s() assertion method.

Example 4.1. Using setUp() to create the stack fixture

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass StackTest extends Test Case

{
protected $stack
protected function setUp()
{
$this->stack = [];
}
public function testEnpty()
{
$t hi s- >assert True(enpt y($t hi s->st ack));
}
public function testPush()
{
array_push($this->stack, 'foo")
$t hi s- >assert Equal s(' foo', $this->stack[count($this->stack)-1])
$t hi s- >assert Fal se(enpt y($t hi s->st ack));
}
public function testPop()
{
array_push($this->stack, 'foo")
$t hi s- >assert Equal s(' foo', array_pop($thi s->stack));
$t hi s- >assert True(enpt y($t hi s- >st ack));
}
}

27

Fixtures

?>

Theset Up() andt ear Down() template methods are run once for each test method (and on

fresh instances) of the test case class.

In addition, the set UpBef or eCl ass() andt ear DownAft er Cl ass() template methods

are caled before the first test of the test case class is run and after the last test of the test case class
isrun, respectively.

The example below shows all template methods that are available in atest case class.

Example 4.2. Example showing all template methods available

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Tenpl at eMet hodsTest ext ends Test Case

{

public static function set UpBefored ass()

{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function setUp()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function assertPreConditions()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
public function testOne()
{
fwite(STDOUT, _ METHOD _ . "\n");
$t hi s- >assert True(true);
}
public function testTwo()
{
fwite(STDOUT, _ METHOD _ . "\n");
$t hi s- >assert True(fal se);
}
protected function assertPost Conditions()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function tearDown()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
public static function tearDownAfterC ass()
{
fwite(STDOUT, _ METHOD _ . "\n");
}
protected function onNot Successful Test (Exception $e)
{
fwite(STDOUT, _ METHOD _ . "\n");

28

Fixtures

t hrow $e;

}

?>

phpunit Tenpl at eMet hodsTest
PHPUNit 5.4.0 by Sebastian Bergnmann and contri butors.

Tenpl at eMet hodsTest : : set UpBef ored ass
Tenpl at eMet hodsTest : : set Up

Tenpl at eMet hodsTest : : assert PreCondi ti ons
Tenpl at eMet hodsTest : : t est One

Tenpl at eMet hodsTest : : assert Post Condi ti ons
Tenpl at eMet hodsTest : : t ear Down

. Tenpl at eMet hodsTest : : set Up

Tenpl at eMet hodsTest : : assert PreCondi ti ons
Tenpl at eMet hodsTest : : t est Two

Tenpl at eMet hodsTest : : t ear Down

Tenpl at eMet hodsTest : : onNot Successf ul Test
FTenpl at eMet hodsTest : : t ear DownAf t er G ass

Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Tenpl at eMet hodsTest : : t est Two
Fai |l ed asserting that <bool ean:false> is true.
/ honme/ sb/ Tenpl at eMet hodsTest . php: 30

FAl LURES!
Tests: 2, Assertions: 2, Failures: 1.

More setUp() than tearDown()

set Up() andt ear Down() arenicely symmetrical in theory but not in practice. In practice, you
only need toimplement t ear Down() if you have allocated external resources likefiles or socketsin
set Up() .If yourset Up() just createsplain PHP objects, you can generally ignoret ear Down() .
However, if you create many objectsin your set Up() , you might want to unset () the variables
pointing to those objects in your t ear Down() so they can be garbage collected. The garbage col-
lection of test case objectsis not predictable.

Variations

What happens when you have two tests with slightly different setups? There are two possibilities:

» If theset Up() code differs only slightly, move the code that differs from the set Up() codeto
the test method.

« If you really have a different set Up() , you need a different test case class. Name the class after
the differencein the setup.

Sharing Fixture

Therearefew good reasonsto share fixtures between tests, but in most casesthe need to share afixture
between tests stems from an unresolved design problem.

A good example of afixture that makes sense to share across several tests is a database connection:
you log into the database once and reuse the database connection instead of creating anew connection
for each test. This makes your tests run faster.

29

Fixtures

Example 4.3, “ Sharing fixture between the tests of atest suite” usesthe set UpBef or ed ass()
and t ear DownAf t er Cl ass() template methods to connect to the database before the test case
class first test and to disconnect from the database after the last test of the test case, respectively.

Example 4.3. Sharing fixture between thetests of a test suite

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass Dat abaseTest extends Test Case

{
protected static $dbh;
public static function set UpBefored ass()
{
sel f::$dbh = new PDO('sqglite::menory:");
}
public static function tearDownAfterC ass()
{
sel f::$dbh = nul |
}
}
?>

It cannot be emphasized enough that sharing fixtures between tests reduces the value of the tests.
The underlying design problem isthat objects are not loosely coupled. Y ou will achieve better results
solving the underlying design problem and then writing tests using stubs (see Chapter 9, Test Doubl es),
than by creating dependencies between tests at runtime and ignoring the opportunity to improve your
design.

Global State

It is hard to test code that uses singletons. [http://googl etesting.bl ogspot.com/2008/05/tott-using-de-
pendancy-injection-to.html] The same istrue for code that uses global variables. Typically, the code
you want to test is coupled strongly with a global variable and you cannot control its creation. An
additional problem isthe fact that one test's change to a global variable might break another test.

In PHP, global variables work like this:

» A global variable $f oo = ' bar' ; isstoredas$GLOBALS[' foo'] = 'bar';.
» The $GLOBALS variable is a so-called super-global variable.

 Super-global variables are built-in variables that are always available in al scopes.

« In the scope of afunction or method, you may access the global variable $f oo by either directly
accessing $GLOBALS[' foo'] or by using gl obal $f 0o; to create alocal variable with a
reference to the global variable.

Besides global variables, static attributes of classes are also part of the global state.

By default, PHPUnit runs your tests in a way where changes to global and super-global variables
(PGLOBALS,$_ENV,$_POST,$_GET,$_COXI E,$_SERVER, $_FI LES, $_REQUEST) do not
affect other tests. Optionally, thisisolation can be extended to static attributes of classes.

Note

The backup and restore operations for global variables and static class attributes use ser i -
alize() andunserialize().

30

http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html

Fixtures

Objects of some classes (e.g., PDO) cannot be serialized and the backup operation will break
when such an object is stored e.g. in the §GLOBALS array.

The @ackupd obal s annotation that is discussed in the section called “ @backupGlobals’ can be
used to control the backup and restore operations for global variables. Alternatively, you can provide
ablacklist of global variablesthat are to be excluded from the backup and restore operations like this

cl ass MyTest extends Test Case

{
prot ect ed $backupd obal sBl acklist = [' gl obal Vari abl e'];

/1

Note

Settingthe $backupd obal sBl ackl i st property insidee.g. theset Up() method has
no effect.

The @ackupSt ati cAttri but es annotation discussed in the section called “ @backupStati-
CAttributes’ can be used to back up all static property valuesin all declared classes before each test
and restore them afterwards.

It processes all classes that are declared at the time a test starts, not only the test class itself. It only
appliesto static class properties, not static variables within functions.

Note

The @ackupSt ati cAttri but es operation is executed before a test method, but only
if it isenabled. If a static value was changed by a previously executed test that did not have
@ackupSt ati cAttri but es enabled, then that valuewill be backed up and restored —
not the originally declared default value. PHP does not record the originally declared default
value of any static variable.

The same appliesto static properties of classesthat were newly loaded/declared within atest.
They cannot be reset to their originally declared default value after the test, since that value
is unknown. Whichever valueis set will leak into subsequent tests.

For unit tests, it isrecommended to explicitly reset the values of static properties under testin
your set Up() codeinstead (andideally alsot ear Down() , so asto not affect subsequently
executed tests).

You can provide a blacklist of static attributes that are to be excluded from the backup and restore
operations:

cl ass MyTest extends Test Case

{
protected $backupStaticAttributesBlacklist = [
‘classNane' => ['attributeNane']
l;
1.
}
Note

Setting the $backupSt ati cAttri but esBl ackl i st property inside e.g. the set -
Up() method has no effect.

31

Chapter 5. Organizing Tests

One of the goals of PHPUnit isthat tests should be composable: we want to be able to run any number
or combination of tests together, for instance all tests for the whole project, or the tests for all classes
of acomponent that is part of the project, or just the tests for asingle class.

PHPUnNit supports different ways of organizing tests and composing them into atest suite. Thischapter
shows the most commonly used approaches.

Composing a Test Suite Using the Filesystem

Probably the easiest way to compose atest suite isto keep all test case sourcefilesin atest directory.
PHPUnNIt can automatically discover and run the tests by recursively traversing the test directory.

Lets take a look at the test suite of the sebastianbergmann/money [http://github.com/sebastian-
bergmann/money/] library. Looking at this project's directory structure, we see that the test case class-
esinthet est s directory mirror the package and class structure of the System Under Test (SUT)
inthesr c directory:

src tests

“-- Currency. php “-- CurrencyTest. php

“-- IntlFormatter. php “-- Intl FormatterTest. php
*-- Money. php “-- MoneyTest. php

" -- autol oad. php

To run all tests for the library we just need to point the PHPUNit command-line test runner to the
test directory:

phpunit --bootstrap src/autol oad. php tests
PHPUnit 5.4.0 by Sebasti an Ber gnann.

Time: 636 ns, Menory: 3.50M

K (33 tests, 52 assertions)

Note

If you point the PHPUnit command-linetest runner to adirectory it will look for * Test . php
files.

To run only the tests that are declared in the CurrencyTest test case class in t ests/
Cur rencyTest . php we can use the following command:

phpunit --bootstrap src/autol oad. php tests/CurrencyTest
PHPUNit 5.4.0 by Sebastian Ber gnann.

Time: 280 nms, Menory: 2.75M
OK (8 tests, 8 assertions)
For more fine-grained control of which teststo runwe canusethe--fil t er option:

phpunit --bootstrap src/autol oad. php --filter testObjectCanBeConstructedFor ValidConstruc
PHPUnit 5.4.0 by Sebastian Bergmann.

32

http://github.com/sebastianbergmann/money/
http://github.com/sebastianbergmann/money/
http://github.com/sebastianbergmann/money/

Organizing Tests

Time: 167 ns, Menory: 3.00M

K (2 test, 2 assertions)

Note

A drawback of this approach is that we have no control over the order in which the tests are
run. This can lead to problems with regard to test dependencies, see the section called “ Test
Dependencies’. In the next section you will see how you can make the test execution order
explicit by using the XML configuration file.

Composing a Test Suite Using XML Configu-
ration

PHPUnit's XML configuration file (Appendix C, The XML Configuration File) can also be used to
compose a test suite. Example 5.1, “Composing a Test Suite Using XML Configuration” shows a
minimal phpuni t . xm file that will add all * Test classes that are found in * Test . php files
when thet est s directory isrecursively traversed.

Example5.1. Composing a Test Suite Using XML Configuration

<phpunit boot st rap="src/ aut ol oad. php" >
<testsuites>
<testsuite nane="noney">
<di rectory>tests</directory>
</testsuite>
</testsuites>
</ phpuni t >

If phpuni t.xm or phpunit.xm . di st (inthat order) exist in the current working directory
and - - confi gur at i on isnot used, the configuration will be automatically read from that file.

The order in which tests are executed can be made explicit:
Example 5.2. Composing a Test Suite Using XML Configuration

<phpunit boot st rap="src/ aut ol oad. php" >
<testsuites>
<testsuite nane="noney">
<file>tests/Intl FormatterTest. php</file>
<fil e>tests/ MneyTest.php</file>
<file>tests/CurrencyTest. php</file>
</testsuite>
</testsuites>
</ phpuni t >

33

Chapter 6. Risky Tests

PHPUniIt can perform the additional checks documented below while it executes the tests.

Useless Tests

PHPUNit can be strict about tests that do not test anything. This check can be en-
abled by using the - -report-usel ess-tests option on the commandline or by setting
beStri ct About Test sThat DoNot Test Anyt hi ng="true" in PHPUnit's XML configura-
tionfile.

A test that does not perform an assertion will be marked as risky when this check is enabled. Expec-
tations on mock objects or annotations such as @xpect edExcept i on count as an assertion.

Unintentionally Covered Code

PHPUnit can be dtrict about unintentionally covered code. This check can be en-
abled by using the --strict-coverage option on the commandline or by setting
checkFor Uni nt enti onal | yCover edCode="t r ue" in PHPUnit's XML configuration file.

A test that is annotated with @ over s and executes code that is not listed using a @over s or
@ises annotation will be marked as risky when this check is enabled.

Output During Test Execution

Test

PHPUnit can be dtrict about output during tests. This check can be enabled by
using the --disallowtest-output option on the commandline or by setting
beStri ct About Qut put Duri ngTest s="t rue" in PHPUnit's XML configuration file.

A test that emits output, for instance by invoking pr i nt in either thetest code or the tested code, will
be marked as risky when this check is enabled.

Execution Timeout

A time limit can be enforced for the execution of a test if the PHP_I nvoker package is
installed and the pcnt| extension is available. The enforcing of this time limit can be en-
abled by using the --enforce-tine-limt option on the commandline or by setting
beStri ct About Test Si ze="true" in PHPUnit's XML configuration file.

A test annotated with @ ar ge will fail if it takes longer than 60 seconds to execute. Thistimeout is
configurableviathet i meout For Lar geTest s attribute in the XML configuration file.

A test annotated with @redi umwill fail if it takes longer than 10 seconds to execute. Thistimeout is
configurableviathet i meout For Medi unest s attribute in the XML configuration file.

A test that is not annotated with @redi umor @ ar ge will be treated as if it were annotated with
@mal | . A small test will fail if it takeslonger than 1 second to execute. Thistimeout is configurable
viathet i meout For Smal | Test s attribute in the XML configuration file.

Global State Manipulation

PHPUnNit can be strict about tests that manipulate global state. This check can be en-
abled by using the --strict-gl obal -state option on the commandliine or by setting
beSt ri ct About ChangesTod obal St at e="t rue" in PHPUnit's XML configuration file.

34

Chapter 7. Incomplete and Skipped
Tests

Incomplete Tests

When you are working on anew test case class, you might want to begin by writing empty test methods
such as:

public function testSonething()

{
}

to keep track of the tests that you have to write. The problem with empty test methods is that they are
interpreted as a success by the PHPUnit framework. This misinterpretation leads to the test reports
being useless -- you cannot seewhether atest isactually successful or just not yet implemented. Calling
$t hi s->fail () intheunimplemented test method does not help either, since then the test will be
interpreted asafailure. Thiswould bejust aswrong asinterpreting an unimplemented test asa success.

If we think of a successful test as a green light and a test falure as a red light, we
need an additional yellow light to mark a test as being incomplete or not yet implemented.
PHPUni t _Franmewor k_I nconpl et eTest is a marker interface for marking an exception that
is raised by a test method as the result of the test being incomplete or currently not implemented.
PHPUni t _Framewor k_I nconpl et eTest Err or isthe standard implementation of this inter-
face.

Example 7.1, “Marking a test as incomplete” shows a test case class, Sanpl eTest , that contains
one test method, t est Sonet hi ng() . By calling the convenience method mar kTest | ncom
pl et e() (whichautomatically raisessan PHPUni t _Fr amewor k_| nconpl et eTest Err or ex-
ception) in the test method, we mark the test as being incomplete.

Example 7.1. Marking atest asincomplete

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Sanpl eTest extends Test Case

{
public function testSomething()
{
$t hi s- >assert True(true, 'This should already work."');
$t hi s- >mar kTest | nconpl et e(
"This test has not been inplenmented yet.
)i
}
}
?>

An incomplete test is denoted by an | in the output of the PHPUnit command-line test runner, as
shown in the following example:

phpunit --verbose Sanpl eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

35

Incomplete and Skipped Tests

Time: 0 seconds, Menory: 3.95M
There was 1 inconplete test:

1) Sanpl eTest: :t est Sonet hi ng
This test has not been inplenmented yet.

/ home/ sb/ Sanpl eTest . php: 12
OK, but inconplete or skipped tests!
Tests: 1, Assertions: 1, Inconplete: 1.

Table 7.1, “API for Incomplete Tests’ shows the API for marking tests as incompl ete.

Table7.1. API for Incomplete Tests

M ethod Meaning

voi d markTest | nconpl et e() Marks the current test as incomplete.

voi d markTest | nconpl ete(string Marks the current test as incomplete using
$message) $message as an explanatory message.

Skipping Tests

Not all tests can berun in every environment. Consider, for instance, a database abstraction layer that
has several driversfor the different database systems it supports. The tests for the MySQL driver can
of course only be run if aMySQL server isavailable.

Example 7.2, “Skipping a test” shows a test case class, Dat abaseTest , that contains one test
method, t est Connecti on() . Inthetest caseclass set Up() template method we check whether
the MySQLi extension is available and use the mar kTest Ski pped() method to skip the test if
itisnot.

Example 7.2. Skipping a test

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Dat abaseTest extends Test Case

{
protected function set Up()
{
if (!extension_|loaded(' mysqli')) {
$t hi s- >mar kTest Ski pped(
' The MySQLi extension is not avail able.
)i
}
}
public function testConnection()
{
}
}
?>

A test that has been skipped isdenoted by an S in the output of the PHPUnNit command-line test runner,
as shown in the following example:

phpunit --verbose Dat abaseTest

36

Incomplete and Skipped Tests

PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.
S

Time: 0 seconds, Menory: 3.95M
There was 1 skipped test:

1) Dat abaseTest: :test Connection
The MySQLi extension is not avail able.

/ home/ sb/ Dat abaseTest . php: 9

OK, but inconplete or skipped tests!
Tests: 1, Assertions: 0, Skipped: 1.

Table 7.2, “API for Skipping Tests” shows the API for skipping tests.

Table7.2. API for Skipping Tests

M ethod Meaning

voi d mar kTest Ski pped()

Marks the current test as skipped.

voi d mar kTest Ski pped(string
$message)

Marks the current test as skipped using $nes-
sage as an explanatory message.

Skipping Tests using @requires

In addition to the above methods it is also possible to use the @ equi r es annotation to express

common preconditions for atest case.

Table 7.3. Possible @requires usages

ccessible

Type Possible Values Examples Another example

PHP Any PHP versioniden- |@requiresPHP5.3.3 | @requires PHP 5.4-dev
tifier

PHPUNI t Any PHPUnit version | @requires PHPUnit @requires PHPUnit 4.6
identifier 3.6.3

(03] A regexp match- @requiresOSLinux |@requires OSWIN32|
ing PHP_OS [http:// WINNT
php.net/manual/en/
reserved.constants.php#constant.php-
o3

function Any valid parame- @requires function @requires function
ter to function_exists |imap_open ReflectionM ethod::setA
[http://php.net/
function_exists]

ext ensi on Any extension name | @requires extension @requires extension re-
aong with an optional | mysqli dis2.2.0
version identifier

Example 7.3. SKkipping test cases using @requires

<?php
use PHPUnI t\ Framewor k\ Test Case;

37

http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/function_exists
http://php.net/function_exists
http://php.net/function_exists

Incomplete and Skipped Tests

cl ass Dat abaseTest extends Test Case

{
public function testConnection()
{
}

}

?>

If you are using syntax that doesn't compilewith acertain PHP Version look into thexml configuration
for version dependent includes in the section called “ Test Suites”

38

Chapter 8. Database Testing

Many beginner and intermediate unit testing examples in any programming language suggest that it
is perfectly easy to test your application's logic with simple tests. For database-centric applications
thisisfar away from thereality. Start using Wordpress, TY PO3 or Symfony with Doctrine or Propel,
for example, and you will easily experience considerable problems with PHPUnit: just because the
database is so tightly coupled to these libraries.

Note

Make sure you have the PHP extension pdo and database specific extensions such as
pdo_nysql installed. Otherwise the examples shown below will not work.

Y ou probably know this scenario from your daily work and projects, where you want to put your fresh
or experienced PHPUnNit skills to work and get stuck by one of the following problems:

1. The method you want to test executes a rather large JOIN operation and uses the data to calculate
some important results.

2. Your businesslogic performs amix of SELECT, INSERT, UPDATE and DELETE statements.

3. You need to setup test data in (possibly much) more than two tables to get reasonable initial data
for the methods you want to test.

The DbUnit extension considerably simplifies the setup of a database for testing purposes and allows
you to verify the contents of a database after performing a series of operations.

Supported Vendors for Database Testing

DbUnit currently supports MySQL, PostgreSQL, Oracle and SQLite. Through Zend Framework
[http://framework.zend.com] or Doctrine 2 [http://www.doctrine-project.org] integrations it has ac-
cess to other database systems such as IBM DB2 or Microsoft SQL Server.

Difficulties in Database Testing

There isagood reason why all the examples on unit testing do not include interactions with the data-
base: these kind of tests are both complex to setup and maintain. While testing against your database
you need to take care of the following variables:

* The database schema and tables

* Inserting the rows required for the test into these tables

* Verifying the state of the database after your test has run
* Cleanup the database for each new test

Because many database APIs such as PDO, MySQL.i or OCI8 are cumbersome to use and verbose in
writing doing these steps manually is an absolute nightmare.

Test code should be as short and precise as possible for several reasons:

* You do not want to modify considerable amount of test code for little changes in your production
code.

* You want to be able to read and understand the test code easily, even months after writing it.

39

http://framework.zend.com
http://framework.zend.com
http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

Additionally you have to realize that the database is essentially a global input variable to your code.
Two testsin your test suite could run against the same database, possibly reusing data multiple times.
Failuresin one test can easily affect the result of the following tests making your testing experience
very difficult. The previously mentioned cleanup step is of major importance to solve the “database
isaglobal input” problem.

DbUnit helpsto simplify all these problems with database testing in an elegant way.

What PHPUnit cannot help you with isthe fact that database tests are very slow compared to tests not
using the database. Depending on how large the interactions with your database are your tests could
run a considerable amount of time. However, if you keep the amount of data used for each test small
and try to test as much code using non-database tests you can easily get away in under aminute even
for large test suites.

The Doctrine 2 project [http://www.doctrine-project.org]'s test suite, for example, currently has atest

suite of about 1000 tests where nearly half of them accesses the database and still runsin 15 seconds
against aMySQL database on a standard desktop computer.

The four stages of a database test

In his book on xUnit Test Patterns Gerard Meszaros lists the four stages of a unit-test:
1. Set up fixture
2. Exercise System Under Test
3. Verify outcome
4. Teardown
What isa Fixture?

A fixture describes the initial state your application and database are in when you
execute atest.

Testing the database requires you to hook into at |east the setup and teardown to clean-up and writethe

required fixture data into your tables. However, the database extension has good reason to revert the
four stages in a database test to resemble the following workflow that is executed for each single test:

1. Clean-Up Database

Since there is dways a first test that runs against the database you do not know exactly if there is
already data in the tables. PHPUniIt will execute a TRUNCATE against al the tables you specified
to reset their status to empty.

2. Set up fixture

PHPUnNit will then iterate over all thefixture rows specified and insert them into their respectivetables.

3-5. Run Test, Verify outcome and Teardown

After the database isreset and loaded with itsinitia state the actual test is executed by PHPUnit. This
part of the test code does not require awareness of the Database Extension at all, you can go on and
test whatever you like with your code.

In your test use a special assertion called assert Dat aSet sEqual () for verification purposes,
however, thisisentirely optional. Thisfeature will be explained in the section “ Database Assertions’.

40

http://www.doctrine-project.org
http://www.doctrine-project.org

Database Testing

Configuration of a PHPUnIit Database Test-
Case

Usually when using PHPUnit your testcases would extend the phpuni t \ f r amewor k\ Test Case
classin the following way:

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass MyTest extends Test Case

{
public function testCal cul ate()
{
$t hi s->assert Equal s(2, 1 + 1);
}
}
?>

If you want to test code that works with the Database Extension the setup is a bit more complex and
you have to extend a different abstract TestCase requiring you to implement two abstract methods
get Connecti on() andget Dat aSet () :

<?php
cl ass MyCQuest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case
{

public function get Connection()

{
$pdo = new PDO('sqlite::nenory:")
return $this->createDef aul t DBConnecti on($pdo, ':nenory:"')

public function getDataSet ()
{

}

return $this->createFl at XM_Dat aSet (dirname(__FILE).'/_fil es/guestbook-seed. xm

}

?>

Implementing getConnection()

To alow the clean-up and fixture loading functionalities to work the PHPUnit Database Extension
requires access to a database connection abstracted across vendors through the PDO library. It isim-
portant to note that your application does not need to be based on PDO to use PHPUnit's database
extension, the connection is merely used for the clean-up and fixture setup.

In the previous example we create an in-memory Sqlite connection and pass it to the cre-
at eDef aul t DBConnect i on method which wraps the PDO instance and the second parame-
ter (the database-name) in a very simple abstraction layer for database connections of the type
PHPUni t _Ext ensi ons_Dat abase_DB_| Dat abaseConnecti on.

The section “Using the Database Connection” explains the APl of this interface and how you can
make the best use of it.

41

Database Testing

Implementing getDataSet()

The get Dat aSet () method defines how the initial state of the database should look before each
test isexecuted. The state of a database is abstracted through the concepts DataSet and DataT able both
being represented by theinterfacesPHPUni t _Ext ensi ons_Dat abase_ Dat aSet _| Dat aSet

and PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Dat aTabl e. The next section will de-
scribe in detail how these concepts work and what the benefits are for using them in database testing.

For the implementation we only need to know that theget Dat aSet () method is called once during
set Up() to retrieve the fixture data-set and insert it into the database. In the example we are using
afactory method cr eat eFl at XM_Dat aSet ($f i | enane) that represents a data-set through an
XML representation.

What about the Database Schema (DDL)?

PHPUnNit assumes that the database schemawith all itstables, triggers, sequences and viewsis created
before atest isrun. Thismeansyou as devel oper have to make sure that the database is correctly setup
before running the suite.

There are several means to achieve this pre-condition to database testing.

1. If you are using a persistent database (not Sglite Memory) you can easily setup the database once
with tools such as phpMyAdmin for MySQL and re-use the database for every test-run.

2. If you are using libraries such as Doctrine 2 [http://www.doctrine-project.org] or Propel [http://
www.propelorm.org/] you can use their APIs to create the database schema you need once before
you run the tests. Y ou can utilize PHPUnit's Bootstrap and Configuration [textui.html] capabilities
to execute this code whenever your tests are run.

Tip: Use your own Abstract Database TestCase

From the previous implementation example you can easily seethat get Connect i on() method is
pretty static and could be re-used in different database test-cases. Additionally to keep performance
of your tests good and database overhead low you can refactor the code a little bit to get a generic
abstract test case for your application, which still alows you to specify a different data-fixture for
each test case:

<?php
abstract class MyApp_Tests_Dat abaseTest Case ext ends PHPUni t _Ext ensi ons_Dat abase_Test Case
{

static private $pdo = nul | ;

private $conn = null;

final public function getConnection()

{
if ($this->conn === null) {
if (self::$pdo == null) {
sel f::$pdo = new PDQ('sqglite::menory:")
}
$t hi s- >conn = $t hi s- >cr eat eDef aul t DBConnecti on(sel f:: $pdo, ':nenory:');
}
return $this->conn;
}
}
?>

42

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.propelorm.org/
http://www.propelorm.org/
http://www.propelorm.org/
textui.html
textui.html

Database Testing

This has the database connection hardcoded in the PDO connection though. PHPUnit has anoth-
er awesome feature that could make this testcase even more generic. If you use the XML Config-
uration [appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables| you
could make the database connection configurable per test-run. First let's create a“ phpunit.xml” filein
our testy/ directory of the application that looks like:

<?xm version="1.0" encodi ng="UTF-8" ?>
<phpuni t >
<php>
<var nanme="DB_DSN' val ue="nysql : dbnane=nyguest book; host =l ocal host" />
<var name="DB_USER' val ue="user" />
<var name="DB_PASSWD' val ue="passwd" />
<var nanme="DB_DBNAME" val ue="nyguest book" />
</ php>
</ phpuni t >

We can now modify our test-case to ook like:
<?php

abstract class Generic_Tests Dat abaseTest Case extends PHPUnit Extensi ons_Dat abase Test Ca

{

static private $pdo = null

private $conn = null;

final public function getConnection()

{
if ($this->conn === null) {
if (self::$pdo == null) {
sel f::$pdo = new PDO{ $GLOBALS[' DB DSN |, $GLOBALS[' DB USER], $GLOBALS|
}
$t hi s- >conn = $t hi s- >cr eat eDef aul t DBConnect i on(sel f:: $pdo, $GLOBALS[' DB_DBNA
}
return $this->conn;
}
}
?>

We can now run the database test suite using different configurationsfrom the command-lineinterface:

user @eskt op> phpunit --configuration devel oper-a.xm MTests/
user @eskt op> phpunit --configuration devel oper-b.xm MTests/

The possibility to run the database tests against different database targets easily is very important if
you are developing on the development machine. If several developers run the database tests against
the same database connection you can easily experience test-failures because of race-conditions.

Understanding DataSets and DataTables

A central concept of PHPUnit's Database Extension are DataSets and DataTables. Y ou should try to
understand this simple concept to master database testing with PHPUnit. The DataSet and DataTable
are an abstraction layer around your database tables, rows and columns. A simple API hides the un-
derlying database contents in an object structure, which can also be implemented by other non-data-
base sources.

Thisabstractionisnecessary to comparetheactual contents of adatabase against the expected contents.
Expectations can be represented as XML, YAML, CSV files or PHP array for example. The DataSet

43

appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables
appendixes.configuration.html#appendixes.configuration.php-ini-constants-variables

Database Testing

and DataTable interfaces enable the comparison of these conceptually different sources, emulating
relational database storage in a semantically similar approach.

A workflow for database assertions in your tests then consists of three simple steps:
 Specify one or more tablesin your database by table name (actual dataset)

» Specify the expected dataset in your preferred format (YAML, XML, ..)

» Assert that both dataset representations equal each other.

Assertions are not the only use-case for the DataSet and DataTable in PHPUnit's Database Extension.
As shown in the previous section they also describe the initial contents of a database. Y ou are forced
to define afixture dataset by the Database TestCase, which is then used to:

» Delete all the rows from the tables specified in the dataset.

* Write all the rows in the data-tables into the database.

Available Implementations

There are three different types of datasets/datatables:
* File-Based DataSets and DataT ables

* Query-Based DataSet and DataTable

* Filter and Composition DataSets and DataT ables

Thefile-based datasets and tables are generally used for theinitial fixture and to describe the expected
state of the database.

Flat XML DataSet

The most common dataset iscalled Flat XML. Itisavery simple xml format where atag inside the root
node<dat aset > represents exactly onerow in the database. The tags name equalsthetable to insert
the row into and an attribute represents the column. An example for a smple guestbook application
could look like this:

<?xm version="1.0" ?>
<dat aset >
<guest book i d="1" conten
<guest book i d="2" conten
</ dat aset >

"Hel | 0 buddy!" user="joe" created="2010-04-24 17:15:23" />
"

4=
t= like it!" user="nancy" created="2010-04-26 12:14:20" />

Thisis obviously easy to write. Here <guest book> is the table name where two rows are inserted

LI

into each with four columns “id”, “content”, “user” and “created” with their respective values.
However, this simplicity comes at a cost.

From the previous example it isn't obvious how you would specify an empty table. You can insert a
tag with no attributes with the name of the empty table. A flat xml file for an empty guestbook table
would then look like:

<?xm version="1.0" ?>
<dat aset >

<guest book />
</ dat aset >

The handling of NULL values with the flat xml dataset istedious. A NULL valueis different than an
empty string value in aimost any database (Oracle being an exception), something that is difficult to

44

Database Testing

describe in the flat xml format. Y ou can represent aNULL's value by omitting the attribute from the
row specification. If our guestbook would allow anonymous entries represented by aNULL valuein
the user column, a hypothetical state of the guestbook table could look like:

<?xm version="1.0" ?>

<dat aset >
<guest book i d="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15:23" />
<guest book id="2" content="I like it!" created="2010-04-26 12:14:20" />

</ dat aset >

In this case the second entry is posted anonymously. However, this leads to a serious problem with
column recognition. During dataset equality assertions each dataset has to specify what columns a
table holds. If an attributeisNULL for all the rows of adata-table, how would the Database Extension
know that the column should be part of the table?

The flat xml dataset makes a crucial assumption now, defining that the attributes on the first defined
row of atable define the columns of this table. In the previous example this would mean “id”, “con-
tent”, “user” and “created” are columns of the guestbook table. For the second row where “user” is
not defined a NULL would be inserted into the database.

When the first guestbook entry is deleted from the dataset only “id”, “content” and “created” would
be columns of the guestbook table, since “user” is not specified.

To use the Flat XML dataset effectively when NULL values are relevant the first row of each table
must not contain any NULL value and only successive rows are allowed to omit attributes. This can
be awkward, since the order of the rowsis arelevant factor for database assertions.

Inturn, if you specify only asubset of thetable columnsin the Flat XML dataset all the omitted values
are set to their default values. Thiswill lead to errorsif one of the omitted columnsisdefined as“NOT
NULL DEFAULT NULL".

In conclusion | can only advise using the Flat XML datasetsif you do not need NULL values.

You can create a flat xml dataset instance from within your Database TestCase by calling the
cr eat eFl at X Dat aSet ($fi | enanme) method:

<?php
cl ass MyTest Case extends PHPUnit _Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()

{
}

return $thi s->createFl at Xnl Dat aSet (' nyFl at Xnl Fi xture. xm ")

}

?>

XML DataSet

There is another more structured XML dataset, which is a bit more verbose to write but avoids the
NULL problems of the Flat XML dataset. Inside the root node <dat aset > you can specify <t a-
bl e>, <col um>, <r ow>, <val ue>and<nul | /> tags. Anequivalent dataset to the previously
defined Guestbook Flat XML looks like:

<?xm version="1.0" ?>
<dat aset >
<t abl e nane="guest book" >

<col um>i d</ col um>
<col utm>cont ent </ col um>
<col um>user </ col um>
<col umz>cr eat ed</ col utm>
<r ow>

45

Database Testing

<val ue>1</val ue>

<val ue>Hel | o buddy! </ val ue>

<val ue>j oe</ val ue>

<val ue>2010-04-24 17:15: 23</val ue>

</ row>
<r ow>
<val ue>2</val ue>
<value>l like it!</val ue>
<null />
<val ue>2010- 04- 26 12: 14: 20</ val ue>
</ row>
</t abl e>

</ dat aset >

Any defined <t abl e> has a name and requires a definition of all the columns with their names. It
can contain zero or any positive number of nested <r ow> elements. Defining no <r ow> element
meansthe tableisempty. The<val ue>and<nul | /> tagshave to be specified in the order of the
previously given <col umm> elements. The<nul | / > tag obviously meansthat thevalueisNULL.

You can create a xml dataset instance from within your Database TestCase by calling the
cr eat exXnl Dat aSet ($f i | enanme) method:

<?php
cl ass MyTest Case extends PHPUnit _Ext ensi ons_Dat abase_Test Case

{
public function getDataSet ()

{
}

return $this->createXMDataSet (' nyXm Fi xture.xm");

}

?>

MySQL XML DataSet

This new XML format is specific to the MySQL database server [http://www.mysgl.com]. Support
for it was added in PHPUnit 3.5. Filesin this format can be generated using the mysql dunp [http://
dev.mysgl.com/doc/refman/5.0/en/mysgldump.html] utility. Unlike CSV datasets, which nysql -
dunp also supports, asingle file in this XML format can contain data for multiple tables. You can
create afilein thisformat by invoking nysql dunp like so:

nmysqgl dunp --xm -t -u [usernane] --password=[password] [database] > /path/to/file.xm

This file can be used in your Database TestCase by cdling the
creat eMySQLXM_Dat aSet ($fi | enarme) method:

<?php
cl ass MyTest Case extends PHPUni t _Ext ensi ons_Dat abase_Test Case
{
public function getDataSet()
{
return $this->createMySQLXM.Dat aSet (' /path/to/file.xm");
}
}
?>

YAML DataSet
Alternatively, you can use Y AML dataset for the guestbook example:

guest book:

46

http://www.mysql.com
http://www.mysql.com
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html

Database Testing

id 1

content: "Hello buddy!"

user: "joe"

created: 2010-04-24 17:15:23

id: 2

content: "I like it!"

user:

created: 2010-04-26 12:14:20

This is simple, convient AND it solves the NULL issue that the similar Flat XML dataset has. A
NULL in YAML isjust the column name without no value specified. An empty string is specified
ascol utm1: "".

The YAML Dataset has no factory method on the Database TestCase currently, so you have to instan-
tiate it manually:

<?php
cl ass Yam Quest bookTest extends PHPUnit Ext ensi ons_Dat abase Test Case

{
protected function get DataSet ()

{
return new PHPUNni t _Ext ensi ons_Dat abase_Dat aSet _Yanl Dat aSet (

dirname(__FILE)."/ _fil es/guestbook.ym"

CSV DataSet

Another file-based dataset is based on CSV files. Each table of the dataset is represented as asingle
CSV file. For our guestbook example we would define a guestbook-table.csv file:

id, content, user, created
1,"Hell o buddy!","joe","2010-04-24 17:15: 23"
2,"l like it!", "nancy", "2010-04-26 12:14: 20"

While thisisvery convenient for editing with Excel or OpenOffice, you cannot specify NULL values
with the CSV dataset. An empty column will lead to the database default empty value being inserted
into the column.

Y ou can create a CSV DataSet by calling:

<?php
cl ass CsvCQuest bookTest extends PHPUnit_Extensi ons_Dat abase_Test Case
{
protected function getDataSet ()
{
$dat aSet = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _CsvDat aSet () ;
$dat aSet - >addTabl e(' guest book' , dirname(__FILE)."/ _files/guestbook.csv");
return $dat aSet
}
}
?>

Array DataSet

Thereis no Array based DataSet in PHPUnit's Database Extension (yet), but we can implement our
own easily. Our guestbook example should look like:

47

Database Testing

<?php
cl ass ArrayCuest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
protected function get DataSet ()

{
return new MyApp_DbUnit _ArrayDat aSet (
[
' guest book' => [

[
id' = 1,
‘content' => 'Hello buddy!"',
‘user' => 'joe',
'created' => '2010-04-24 17:15:23'

I

[
id' = 2,
‘content' => "1 like it!",
"user' => null,
‘created' => '2010-04-26 12:14: 20

I

I
]
DE
}
}
?>

A PHP DataSet has obvious advantages over all the other file-based datasets:
» PHP Arrays can obviously handle NULL values.
* Youwon't need additional files for assertions and can specify them directly in the TestCase.

For thisdataset likethe Flat XML, CSV and Y AML DataSetsthe keys of the first specified row define
the table's column names, in the previous case this would be “id”, “content”, “user” and “created”.

The implementation for this Array DataSet is simple and straightforward:

<?php
cl ass MyApp_DbUnit _ArrayDat aSet extends PHPUnit _Ext ensi ons_Dat abase_Dat aSet _Abst r act Dat a

protected $tables = [];

public function __construct(array $data)
{
foreach ($data AS $t abl eNane => $rows) {
$colums = [];
if (isset($rows[0])) {
$col ums = array_keys($rows[0]);
}

$nmet aDat a = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl eMet aDat a($t a
$t abl e = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl e($net aDat a) ;

foreach ($rows AS $row) {
$t abl e- >addRow($r ow) ;

}
$t hi s- >t abl es[$t abl eNane] = $t abl e;

48

Database Testing

}
}
protected function createlterator($reverse = fal se)
{
return new PHPUNni t _Ext ensi ons_Dat abase_Dat aSet _Def aul t Tabl el t er at or ($t hi s- >t abl e
}
public function get Tabl e($t abl eNane)
{
if (!isset($this->tables[$tableNane])) {
throw new I nval i dAr gunment Excepti on("$tabl eName is not a table in the current
}
return $this->tabl es[$t abl eNane] ;
}
}
?>

Query (SQL) DataSet

For database assertions you do not only need the file-based datasets but also a Query/SQL based
Dataset that contains the actual contents of the database. Thisis where the Query DataSet shines:

<?php

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connection());
$ds- >addTabl e(' guest book') ;

?>

Adding atable just by nameisan implicit way to define the data-table with the following query:

<?php

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connecti on())
$ds- >addTabl e(' guest book', ' SELECT * FROM guest book')

?>

Y ou can make use of this by specifying arbitrary queriesfor your tables, for example restricting rows,
column or adding ORDER BY clauses:

<?php

$ds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet ($t hi s- >get Connecti on())
$ds- >addTabl e(' guest book', ' SELECT id, content FROM guestbook ORDER BY created DESC)
?>

The section on Database Assertions will show some more details on how to make use of the Query
DataSet.

Database (DB) Dataset

Accessing the Test Connection you can automatically create a DataSet that consists of all the tables
with their content in the database specified as second parameter to the Connections Factory method.

Y ou can either create adataset for the complete database asshownint est Guest book() , or restrict
it to a set of specified table names with a whitelist as shown int est Fi | t er edGuest book()
method.

<?php
cl ass MySql Guest bookTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case
{

49

Database Testing

public function getConnection()

{
$dat abase = ' ny_dat abase’;
$user = 'ny_user';
$password = ' ny_password' ;
$pdo = new PDQ(' nysql:..."', S$user, S$password);
return $this->createDefaul t DBConnecti on($pdo, $dat abase);
}
public function testCuestbook()
{
$dat aSet = $t hi s- >get Connection() - >creat eDat aSet () ;
}
public function testFilteredCGuestbook()
{
$t abl eNanes = [' guest book'];
$dat aSet = $t hi s- >get Connecti on() - >cr eat eDat aSet ($t abl eNanes) ;
}
}
?>

Replacement DataSet

| have been talking about NULL problemswith the Flat XML and CSV DataSet, but thereisasdlightly
complicated workaround to get both types of datasets working with NULLs.

The Replacement DataSet is a decorator for an existing dataset and allows you to replace values in
any column of the dataset by another replacement value. To get our guestbook example working with
NULL values we specify thefilelike:

<?xm version="1.0" ?>

<dat aset >
<guest book id="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15:23" />
<guest book id="2" content="I1 like it!" user="##NULL##" created="2010-04-26 12: 14: 20"

</ dat aset >

We then wrap the Flat XML DataSet into a Replacement DataSet:

<?php
cl ass Repl acenent Test extends PHPUnit_Ext ensi ons_Dat abase_Test Case
{
public function getDataSet ()
{
$ds = $this->createFl at Xm Dat aSet (' nmyFl at Xm Fi xture. xm ") ;
$rds = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Repl acenent Dat aSet ($ds) ;
$rds- >addFul | Repl acenent (' ##NULL##' , nul |);
return $rds;
}
}
?>

DataSet Filter

If you have alarge fixture file you can use the DataSet Filter for white- and blacklisting of tables and
columns that should be contained in a sub-dataset. This is especially handy in combination with the
DB DataSet to filter the columns of the datasets.

50

Database Testing

<?php
cl ass DataSetFilterTest extends PHPUnit Extensions_Dat abase Test Case
{
public function testlncludeFilteredGuestbook()
{
$t abl eNanmes = [' guest book'] ;
$dat aSet = $t hi s- >get Connecti on() - >creat eDat aSet () ;
$filterDataSet = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Dat aSet Fi | t er ($dat aSet)
$fi |t er Dat aSet - >addl ncl udeTabl es([' guest book']);
$filterDataSet->setlncl udeCol untmsFor Tabl e(' guest book', ['id', 'content'])
}
public function testExcludeFilteredGuestbook()
{
$t abl eNanmes = [' guest book'];
$dat aSet = $t hi s- >get Connecti on() - >creat eDat aSet () ;
$filterDataSet = new PHPUni t _Extensi ons_Dat abase_Dat aSet _Dat aSet Fi | t er ($dat aSet)
$fi |t erDat aSet - >addExcl udeTabl es([' foo', 'bar', 'baz'])
$fi |t erDataSet->set Excl udeCol unmsFor Tabl e(' guest book', ['user', 'created'])
}
}
?>

NOTE Y ou cannot use both exclude and include column filtering on the sametable,
only on different ones. Plusit is only possible to either white- or blacklist tables,
not both of them.

Composite DataSet

The composite DataSet is very useful for aggregating several already existing datasets into a single
dataset. When several datasets contain the same table the rows are appended in the specified order.
For example if we have two datasets fixturel.xml:

<?xm version="1.0" ?>
<dat aset >

<guest book i d="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15:23" />
</ dat aset >

and fixture2.xml:

<?xm version="1.0" ?>
<dat aset >

<guest book id="2" content="I1 like it!" user="##NULL##" created="2010-04-26 12: 14: 20"
</ dat aset >

Using the Composite DataSet we can aggregate both fixture files:

<?php
cl ass ConpositeTest extends PHPUni t _Ext ensi ons_Dat abase_Test Case
{
public function getDataSet ()
{
$ds1
$ds2

$t hi s- >creat eFl at Xml Dat aSet (' fi xturel. xm ");
$t hi s- >creat eFl at Xml Dat aSet (' fi xture2. xm");

$conposi teDs = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Conposi t eDat aSet ()
$conposi t eDs- >addDat aSet ($ds1);
$conposi t eDs- >addDat aSet ($ds2) ;

51

Database Testing

}

?>

return $conpositeDs;

Beware of Foreign Keys

During Fixture SetUp PHPUnit's Database Extension inserts the rows into the database in the order
they are specified in your fixture. If your database schema uses foreign keys this means you have to
specify the tables in an order that does not cause foreign key constraintsto fail.

Implementing your own DataSets/DataTables

To understand the internals of DataSets and DataTables, lets have alook at the interface of a DataSet.
Y ou can skip this part if you do not plan to implement your own DataSet or DataTable.

<?php

i nterface PHPUNni t _Ext ensi ons_Dat abase_Dat aSet | Dat aSet extends |t eratorAggregate

{

}

?>

public function get Tabl eNanes();

public function get Tabl eMet aDat a($t abl eNane) ;

public function get Tabl e($t abl eNane) ;

public function assertEqual s(PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Dat aSet $ot her) ;

public function get Reverselterator();

The public interface is used internally by the asser t Dat aSet sEqual () assertion on the Data
base TestCase to check for dataset quality. Fromthe | t er at or Aggr egat e interface the | DataSet
inheritstheget | t er at or () method to iterate over all tables of the dataset. The reverseiterator a-
lows PHPUnit to truncate tabl es opposite the order they were created to satisfy foreign key constraints.

Depending on theimplementation different approaches are taken to add tableinstancesto adataset. For
exampl e, tables are added internally during construction from the sourcefile in all file-based datasets
such as Yam Dat aSet , Xnl Dat aSet or FI at Xl Dat aSet .

A table is also represented by the following interface:

<?php

i nterface PHPUni t _Ext ensi ons_Dat abase_Dat aSet _| Tabl e

{

}

?>

public function getTabl eMetaDat a();

public function get RowCount();

public function getVal ue($row, $col um);

public function get Row $row);

public function assertEqual s(PHPUNni t _Ext ensi ons_Dat abase_Dat aSet _| Tabl e $ot her);

Except the get Tabl eMet aDat a() method it is pretty self-explainatory. The used methods
are al required for the different assertions of the Database Extension that are explained in
the next chapter. The get Tabl eMet aDat a() method has to return an implementation of
the PHPUNni t _Ext ensi ons_Dat abase_Dat aSet _| Tabl eMet aDat a interface, which de-
scribes the structure of the table. It holds information on:

* Thetable name

» Anarray of column-names of thetable, ordered by their appearance in the result-set.

52

Database Testing

» Anarray of the primary-key columns.,

This interface also has an assertion that checks if two instances of Table Metadata equal each other,
which is used by the data-set equality assertion.

The Connection API

There are three interesting methods on the Connection interface which has to be returned from the

get Connecti on() method on the Database TestCase:

<?
in

{

}

?>

1

php
terface PHPUni t _Ext ensi ons_Dat abase DB | Dat abaseConnecti on

public function createDataSet (Array $tabl eNanes = NULL)
public function createQueryTabl e($resul t Name, $sql);
public function get RowCount ($t abl eNane, $whereC ause = NULL);

The cr eat eDat aSet () method creates a Database (DB) DataSet as described in the DataSet
implementations section.

<?php
cl ass ConnectionTest extends PHPUnit Extensions_ Dat abase Test Case

{
public function testCreateDataSet ()

{
$t abl eNanes = [' guest book'];

$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet () ;

}

?>

. Thecr eat eQuer yTabl e() method can be used to create instances of aQueryTable, give them

aresult name and SQL query. Thisis a handy method when it comes to result/table assertions as
will be shown in the next section on the Database Assertions API.

<?php
cl ass ConnectionTest extends PHPUnit Extensions Dat abase Test Case
{
public function testCreateQueryTable()
{
$t abl eNanes
$quer yTabl e

[" guest book'];

}

?>

. The get RowCount () method is a convienent way to access the number of rows in atable, op-

tionally filtered by an additional where clause. This can be used with a simple equality assertion:

<?php
cl ass ConnectionTest extends PHPUnit_Ext ensi ons_Dat abase_Test Case

{
public function testCGet RowCount ()

{

$t hi s- >get Connecti on() - >creat eQueryTabl e(' guest book’

' SELECT *

$t hi s- >assert Equal s(2, $this->get Connection()->get RowCount (' guest book'));

}

53

Database Testing

?>

Database Assertions API

For atesting tool the Database Extension surely provides some assertionsthat you can useto verify the
current state of the database, tables and the row-count of tables. This section describesthisfunctionality
in detail:

Asserting the Row-Count of a Table

It is often helpful to check if atable contains a specific amount of rows. Y ou can easily achieve this
without additional glue code using the Connection API. Say we wanted to check that after insertion
of arow into our guestbook we not only have the two initia entries that have accompanied usin all
the previous examples, but athird one:

<?php
cl ass Guest bookTest extends PHPUni t Ext ensi ons_Dat abase_ Test Case
{
public function testAddEntry()
{
$t hi s- >assert Equal s(2, $thi s->get Connecti on()->get RowCount (' guest book'), "Pre-Co
$guest book = new Guest book();
$guest book- >addEntry("suzy", "Hello world!")
$t hi s- >assert Equal s(3, $thi s->get Connection()->get RowCount (' guest book'), "Insert
}
}
?>

Asserting the State of a Table

The previous assertion is helpful, but we surely want to check the actual contents of the table to verify
that all the values were written into the correct columns. This can be achieved by atable assertion.

For thiswe would define aQuery Table instance which derivesits content from atable name and SQL
guery and compare it to a File/Array Based Data Set:

<?php
cl ass Guest bookTest extends PHPUnit _Ext ensi ons_Dat abase_Test Case
{
public function testAddEntry()
{
$guest book = new Guest book();
$guest book- >addEntry("suzy", "Hello world!");
$queryTabl e = $t hi s- >get Connecti on()->creat eQueryTabl e(
' guest book', ' SELECT * FROM guest book’
IE
$expect edTabl e = $t hi s- >creat eFl at Xn Dat aSet (" expect edBook. xm ")
- >get Tabl e(" guest book") ;
$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e);
}
}
?>

Now we have to write the expectedBook.xml Flat XML file for this assertion:

<?xm version="1.0" ?>

Database Testing

<dat aset >
<guest book i d="1" content="Hell o buddy!" user="joe" created="2010-04-24 17:15:23" />
<guest book id="2" content="I like it!" user="nancy" created="2010-04-26 12:14:20" />

<guest book i d="3" content="Hello world!" user="suzy" created="2010-05-01 21:47: 08" /
</ dat aset >

This assertion would only pass on exactly one second of the universe though, on 2010-05-01
21:47.08. Dates pose a special problem to database testing and we can circumvent the failure by omit-
ting the “created” column from the assertion.

The adjusted expectedBook.xml Flat XML filewould probably havetolook like thefollowing to make
the assertion pass:

<?xm version="1.0" ?>

<dat aset >
<guest book id="1" content="Hell o buddy!" user="joe" />
<guest book id="2" content="1 like it!" user="nancy" />

<guest book id="3" content="Hello world!" user="suzy" />
</ dat aset >

We haveto fix up the Query Table call:

<?php
$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQuer yTabl e(
' guest book', ' SELECT id, content, user FROM guestbook’

DE

?>

Asserting the Result of a Query

Y ou can also assert the result of complex queries with the Query Table approach, just specify aresult
name with a query and compare it to a dataset:

<?php
cl ass Conpl exQueryTest extends PHPUnit_Extensi ons_Dat abase_Test Case
{
public function testConpl exQuery()
{
$queryTabl e = $t hi s- >get Connecti on() - >cr eat eQuer yTabl e(
"myConpl exQuery', ' SELECT conpl exQuery. ..
DK
$expect edTabl e = $t hi s- >creat eFl at Xm Dat aSet (" conpl exQuer yAssertion. xm ")
- >get Tabl e(" nyConpl exQuery");
$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e);
}
}
?>

Asserting the State of Multiple Tables

For sure you can assert the state of multiple tables at once and compare a query dataset against afile
based dataset. There are two different ways for DataSet assertions.

1. You can use the Database (DB) DataSet from the Connection and compare it to a File-Based
DataSet.

<?php
cl ass Dat aSet Asserti onsTest extends PHPUnit Extensi ons_Dat abase_Test Case

{
public function testCreateDataSet Assertion()

55

Database Testing

{
$dat aSet = $t hi s- >get Connecti on()->creat eDat aSet ([' guest book']);
$expect edDat aSet = $t hi s- >cr eat eFl at Xml Dat aSet (' guest book. xm ') ;
$t hi s- >assert Dat aSet sEqual ($expect edDat aSet, $dat aSet);
}
}
?>

2. You can construct the DataSet on your own:

<?php
cl ass Dat aSet AssertionsTest extends PHPUnit_ Extensi ons_Dat abase_Test Case
{
public function testMnual Dat aSet Assertion()
{
$dat aSet = new PHPUni t _Ext ensi ons_Dat abase_Dat aSet _Quer yDat aSet () ;
$dat aSet - >addTabl e(' guest book' , ' SELECT id, content, user FROM guestbook');
$expect edDat aSet = $t hi s- >cr eat eFl at Xl Dat aSet (' guest book. xm ') ;
$t hi s- >assert Dat aSet sEqual ($expect edDat aSet, $dat aSet);
}
}
?>

Frequently Asked Questions

Will PHPUniIt (re-)create the database schema for each
test?

No, PHPUnit requires all database objects to be available when the suite is started. The Database,
tables, sequences, triggers and views have to be created before you run the test suite.

Doctrine 2 [http://www.doctrine-project.org] or eZ Components [http://www.ezcomponents.org] have
powerful toolsthat allow you to create the database schemafrom pre-defined datastructures. However,
these have to be hooked into the PHPUniIt extension to allow an automatic database re-creation before
the complete test-suiteis run.

Since each test completely cleans the database you are not even required to re-create the database for
each test-run. A permanently available database works perfectly.

Am | required to use PDO in my application for the
Database Extension to work?

No, PDO isonly required for the fixture clean- and set-up and for assertions. Y ou can use whatever
database abstraction you want inside your own code.

What can | do, when I get a “Too much Connections”
Error?

If you do not cache the PDO instance that is created from the TestCaseget Connect i on() method
the number of connections to the database isincreasing by one or more with each database test. With
default configuration MySql only allows 100 concurrent connections other vendors also have maxi-
mum connection limits.

The SubSection “Use your own Abstract Database TestCase” shows how you can prevent this error
from happening by using a single cached PDO instance in al your tests.

56

http://www.doctrine-project.org
http://www.doctrine-project.org
http://www.ezcomponents.org
http://www.ezcomponents.org

Database Testing

How to handle NULL with Flat XML / CSV Datasets?

Do not do this. Instead, you should use either the XML or the YAML DataSets.

57

Chapter 9. Test Doubles

Gerard Meszaros introduces the concept of Test Doubles in [Meszaros2007] like this:

Sometimesitisjust plain hard to test the system under test (SUT) becauseit depends
on other components that cannot be used in the test environment. This could be
because they aren't available, they will not return the results needed for the test or
because executing them would have undesirable side effects. In other cases, our test
strategy requires us to have more control or visibility of the internal behavior of
the SUT.

When we are writing atest in which we cannot (or chose not to) use areal depend-
ed-on component (DOC), we can replace it with a Test Double. The Test Double
doesn't have to behave exactly like the real DOC; it merely has to provide the same
API asthereal one so that the SUT thinksit isthereal one!

—Gerard Meszaros

Thecr eat eMock($t ype) andget MockBui | der ($t ype) methods provided by PHPUnit can
be used in a test to automatically generate an object that can act as a test double for the specified
original type (interface or class name). This test double object can be used in every context where an
object of the original type is expected or required.

Thecr eat eMbck($t ype) method immediately returns atest double object for the specified type
(interface or class). The creation of this test double is performed using best practice defaults (the
__construct () and__cl one() methodsof theorigina classare not executed and the arguments
passed to a method of the test double will not be cloned. If these defaults are not what you need then
you can usetheget MockBui | der ($t ype) method to customize the test double generation using
afluent interface.

By default, all methods of the original class are replaced with a dummy implementation that just
returnsnul | (without calling the original method). Usingthewi | | ($t hi s- >r et ur nVal ue())
method, for instance, you can configure these dummy implementations to return a value when called.

Limitation: final, private, and static methods

Please note that fi nal , pri vat e and st at i ¢ methods cannot be stubbed or mocked.
They areignored by PHPUnit's test double functionality and retain their original behavior.

Stubs

The practice of replacing an object with atest doublethat (optionally) returns configured return values
isreferred to as stubbing. Y ou can use astub to "replace areal component on which the SUT depends
so that the test has a control point for the indirect inputs of the SUT. This allows the test to force the
SUT down paths it might not otherwise execute'.

Example 9.2, “Stubbing a method call to return a fixed value” shows how to stub method calls
and set up return values. We first use the cr eat eMock() method that is provided by the ph-
puni t\ framewor k\ Test Case class to set up a stub object that looks like an object of Sone-
G ass (Example 9.1, “The class we want to stub”). We then use the Fluent Interface [http://
martinfowler.com/bliki/Fluentlnterface.html] that PHPUniIt provides to specify the behavior for the
stub. In essence, this means that you do not need to create several temporary objects and wire them
together afterwards. Instead, you chain method calls as shown in the example. This leads to more
readable and "fluent" code.

Example 9.1. The class we want to stub

<?php

58

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

Test Doubles

use PHPUni t\ Fr anewor k\ Test Case

cl ass Soned ass

{
public function doSoret hi ng()
{
}

}

?>

Example 9.2. Stubbing a method call to return a fixed value

<?php
use PHPUni t\ Fr anewor k\ Test Case

class StubTest extends Test Case

{
public function testStub()
{
$stub = $t hi s->creat eMock(Soned ass: : cl ass)
$st ub- >nmet hod(' doSonet hi ng')
->Wi | | Return('foo');
$t hi s- >assert Equal s(' foo', $stub->doSonet hing());
}
}
?>

Limitation: Methods named " method"

The example shown above only works when the original class does not declare a method
named "method".

If the original class does declare a method named “"method" then $st ub-
>expect s($t hi s->any()) - >met hod(' doSonet hi ng') -
>Wi || Return(' foo'); hasto be used.

"Behind the scenes’, PHPUNIt automatically generates a new PHP class that implements the desired
behavior when thecr eat eMbck() method is used.

Example 9.3, “Using the Mock Builder API can be used to configure the generated test double class’
shows an example of how to use the Mock Builder's fluent interface to configure the creation of the
test double.

Example9.3. UsingtheM ock Builder API can beused to configurethegenerated
test double class

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass StubTest extends Test Case

{

59

Test Doubles

public function testStub()

{
$stub = $t hi s- >creat eMock(Soned ass: : cl ass);
$st ub- >met hod(' doSonet hi ng')
->Wi || Return('foo');
$t hi s- >assert Equal s(' foo', $stub->doSomet hi ng());
}
}
?>

In the examples so far we have been returning simple values using wi | | Ret ur n($val ue) . This
short syntax isthesameaswi | | ($t hi s- >r et ur nVal ue($val ue)) . We can use variationson
thislonger syntax to achieve more complex stubbing behaviour.

Sometimes you want to return one of the arguments of a method call (unchanged) as the result of a

stubbed method call. Example 9.4, “ Stubbing a method call to return one of the arguments’ shows
how you can achieve thisusing r et ur nAr gunent () instead of r et ur nVal ue() .

Example 9.4. Stubbing a method call to return one of the arguments

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass StubTest extends Test Case

{
public function testReturnArgunent Stub()
{
$stub = $t hi s- >creat eMock(Soned ass: : cl ass);
$st ub- >nmet hod(' doSonet hi ng')
->wi || ($t hi s->returnArgunent (0));
$t hi s- >assert Equal s(' foo', $stub->doSonethi ng('foo'));
$t hi s- >assert Equal s(' bar', $stub->doSonethi ng(' bar'));
}
}
?>

When testing a fluent interface, it is sometimes useful to have a stubbed method return a reference
to the stubbed object. Example 9.5, “ Stubbing a method call to return a reference to the stub object”
shows how you can user et ur nSel f () to achievethis.

Example 9.5. Stubbing a method call to return areferenceto the stub object
<?php
use PHPUNi t\ Fr anewor k\ Test Case;

cl ass StubTest extends Test Case

{

60

Test Doubles

public function testReturnSelf()

{
$stub = $t hi s- >creat eMock(Soned ass: : cl ass)
$st ub- >met hod(' doSonet hi ng')
->wi I ($this->returnSel f())
$t hi s- >assert Same($st ub, $st ub->doSonet hing());
}
}
?>

Sometimes a stubbed method should return different values depending on a predefined list of argu-
ments. You can use r et ur nVal ueMap() to create a map that associates arguments with corre-
sponding return values. See Example 9.6, “ Stubbing a method call to return the value from a map”
for an example.

Example 9.6. Stubbing a method call to return the value from a map

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass StubTest extends Test Case

{
public function testReturnVal ueMapStub()

{

$stub = $t hi s- >creat eMock(Soned ass: : cl ass)

$map = [
[*a', 'Db
["e, "f

$st ub- >nmet hod(' doSonet hi ng')
->wi || ($this->returnVal ueMap($map)) ;

$t hi s- >assert Equal s(' d', $stub->doSonething('a', 'b', 'c'))
$t hi s- >assert Equal s(' h', $stub->doSonething('e', 'f', 'g"))

}

?>

When the stubbed method call should return a calculated value instead of a fixed one (seer et ur n-
Val ue()) or an (unchanged) argument (seer et ur nAr gunent ()), youcanuser et urnCal | -
back() to have the stubbed method return the result of a callback function or method. See Exam-
ple 9.7, “ Stubbing a method call to return avalue from a callback” for an example.

Example 9.7. Stubbing a method call to return a value from a callback

<?php
use PHPUni t\ Fr anewor k\ Test Case

61

Test Doubles

cl ass StubTest extends Test Case

{
public function testReturnCall backStub()
{
$stub = $t hi s- >creat eMock(Soned ass: : cl ass)
$st ub- >met hod(' doSonet hi ng')
->Wi || ($this->returnCall back('str_rot13"'))
$t hi s- >assert Equal s(' fbzrguvat', $stub->doSomet hi ng(' sonething'));
}
}
?>

A simpler alternative to setting up a callback method may be to specify alist of desired return values.
YoucandothiswiththeonConsecuti veCal | s() method. See Example 9.8, “ Stubbing amethod
call to return alist of valuesin the specified order” for an example.

Example 9.8. Stubbing a method call to return a list of valuesin the specified
order

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass StubTest extends Test Case

{
public function testOnConsecutiveCallsStub()

{

$stub = $t hi s- >creat eMock(Soned ass: : cl ass)

$st ub- >nmet hod(' doSonet hi ng')
->wi | | ($t hi s->onConsecutiveCalls(2, 3, 5 7));

$t hi s- >assert Equal s(2, $stub->doSonet hing());
$t hi s- >assert Equal s(3, $stub->doSonet hing());
$t hi s- >assert Equal s(5, $stub->doSonet hing());

}

?>

Instead of returning a value, a stubbed method can also raise an exception. Example 9.9, “ Stubbing a
method call to throw an exception” shows how to uset hr owexcepti on() todo this.

Example 9.9. Stubbing a method call to throw an exception

<?php
use PHPUni t\ Fr anewor k\ Test Case

cl ass StubTest extends Test Case

{
public function testThrowExceptionStub()

{

$stub = $t hi s->creat eMock(Soned ass: : cl ass)

62

Test Doubles

$st ub- >met hod(' doSonet hi ng')
->wi || ($t hi s->t hrowExcepti on(new Exception))

$st ub- >doSonet hi ng() ;

}

?>

Alternatively, you can write the stub yourself and improve your design along the way. Widely used
resources are accessed through a single facade, so you can easily replace the resource with the stub.
For example, instead of having direct database calls scattered throughout the code, you have asingle
Dat abase object, an implementor of thel Dat abase interface. Then, you can create astub imple-
mentation of | Dat abase and use it for your tests. You can even create an option for running the
tests with the stub database or the real database, so you can use your tests for both local testing during
development and integration testing with the real database.

Functionality that needs to be stubbed out tends to cluster in the same object, improving cohesion.
By presenting the functionality with a single, coherent interface you reduce the coupling with the rest
of the system.

Mock Objects

The practice of replacing an object with atest double that verifies expectations, for instance asserting
that a method has been called, is referred to as mocking.

Y ou can use a mock object "as an observation point that is used to verify the indirect outputs of the
SUT asitisexercised. Typicaly, the mock object also includesthe functionality of atest stubinthat it
must return valuesto the SUT if it hasn't already failed the tests but the emphasisis on the verification
of the indirect outputs. Therefore, a mock object is alot more than just atest stub plus assertions; it
isused in afundamentally different way" (Gerard Meszaros).

Limitation: Automatic verification of expectations

Only mock objects generated within the scope of a test will be verified automatically by
PHPUnNit. Mock objects generated in data providers, for instance, or injected into the test
using the @epends annotation will not be verified automatically by PHPUnit.

Here is an example: suppose we want to test that the correct method, updat e() in our example, is
called on an object that observes another object. Example 9.10, “ The Subject and Observer classesthat
are part of the System under Test (SUT)” shows the code for the Subj ect and Cbser ver classes
that are part of the System under Test (SUT).

Example 9.10. The Subject and Observer classes that are part of the System
under Test (SUT)

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass Subj ect

{

protected $observers = [];
prot ected $nane;

public function __construct($nane)

{

$t hi s- >nane = $nane;

63

Test Doubles

}
public function getNane()
{
return $this->nane;
}
public function attach(Qbserver $observer)
{
$t hi s- >observers[] = $observer
}
public function doSoret hi ng()
{
$t hi s->noti fy(' sonething');
}
public function doSonet hi ngBad()
{
foreach ($this->observers as $observer) {
$observer->report Error (42, ' Sonethi ng bad happened', $this);
}
}
protected function notify($argunent)
{
foreach ($this->observers as $observer) {
$obser ver - >updat e($ar gunent) ;
}
}
}
cl ass Observer
{
public function update($argunent)
{
}
public function reportError($errorCode, $errorMessage, Subject $subject)
{
}
}
?>

Example 9.11, “ Testing that a method gets called once and with a specified argument” shows how to
use amock object to test the interaction between Subj ect and Cbser ver objects.

We first use the get MockBui | der () method that is provided by the phpuni t\frane-
wor k\ Test Case class to set up a mock object for the OGbser ver . Since we give an array as the
second (optional) parameter for the get Mock() method, only the updat e() method of the Cb-
server classisreplaced by amock implementation.

Because we are interested in verifying that a method is called, and which argumentsiit is called with,
weintroducethe expect s() andwi t h() methods to specify how thisinteraction should look.

64

Test Doubles

Example 9.11. Testing that a method gets called once and with a specified
argument

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass Subj ect Test extends Test Case

{
public function testCbserversAreUpdated()
{
$observer = $thi s->get MockBui | der (CObserver: : cl ass)
->set Met hods([' update'])
- >get Mock() ;
$obser ver - >expect s($t hi s->once())
->net hod(' updat e')
->wi t h($t hi s- >equal To("' sonet hing'));
$subj ect = new Subject (' My subject');
$subj ect - >at t ach($obser ver)
$subj ect - >doSonet hi ng() ;
}
}
?>

Thewi t h() method can take any number of arguments, corresponding to the number of arguments
to the method being mocked. Y ou can specify more advanced constraints on the method's arguments
than a simple match.

Example 9.12. Testing that a method gets called with a number of arguments
constrained in different ways

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass Subj ect Test extends Test Case

{

public function testErrorReported()

{

$observer = $thi s->get MockBui | der (Cbserver: : cl ass)
->set Met hods(['reportError'])
- >get Mock() ;

$observer - >expect s($t hi s- >once())
->met hod(' reportError')
->wi t h(
$t hi s- >gr eat er Than(0),
$t hi s->stringContai ns(' Sonet hi ng'),
$t hi s- >anyt hi ng()

65

Test Doubles

DE

$subj ect = new Subject (' My subject');
$subj ect - >at t ach($obser ver) ;

$subj ect - >doSonet hi ngBad() ;

}

?>

Thewi t hConsecut i ve() method can take any number of arrays of arguments, depending on the
callsyou want to test against. Each array isalist of constraints corresponding to the arguments of the
method being mocked, likeinwi t h() .

Example 9.13. Testing that a method gets called two times with specific
arguments.

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass FooTest extends Test Case

{
public function testFunctionCall edTwoTi nesW t hSpeci fi cArgunments()
{
$nmock = $t hi s- >get MockBui | der (st dd ass: : cl ass)
->set Met hods([' set'])
- >get Mock() ;
$nmock- >expect s($t hi s- >exact1y(2))
->met hod(' set')
->w t hConsecuti ve(
[$t hi s->equal To(' foo'), $this->greaterThan(0)],
[$t hi s->equal To(' bar'), $this->greaterThan(0)]
JE
$nock- >set (' foo', 21)
$nock- >set (' bar', 48);
}
}
?>

The cal | back() constraint can be used for more complex argument verification. This constraint
takes a PHP callback asits only argument. The PHP callback will receive the argument to be verified
asitsonly argument and should returnt r ue if theargument passesverificationandf al se otherwise.

Example 9.14. More complex argument verification

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Subj ect Test extends Test Case

{

public function testErrorReported()

{

$observer = $thi s->get MockBui | der (CObserver: : cl ass)
->set Met hods(['reportError'])
- >get Mock();

66

Test Doubles

$obser ver - >expect s($t hi s- >once())

->met hod(' reportError')

->wi t h($t hi s->great er Than(0),
$t hi s- >stri ngCont ai ns(' Sonet hi ng'),
$t hi s- >cal | back(functi on($subj ect){

return is_callabl e([$subject, 'getNane')] &&
$subj ect - >get Name() == 'My subject’;

1)

$subj ect = new Subject (' My subject');
$subj ect - >at t ach($obser ver) ;

$subj ect - >doSonet hi ngBad() ;

Example 9.15. Testing that a method gets called once and with the identical
object as was passed

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

cl ass FooTest extends Test Case

{

public function testldentical ObjectPassed()

{

$expect edObj ect = new stdd ass;
$nmock = $t hi s- >get MockBui | der (st dd ass: : cl ass)
->set Met hods(['foo'])
- >get Mock() ;
$nock- >expect s($t hi s- >once())
->met hod(' foo")
->wi t h($t hi s->i denti cal To($expect edObj ect)) ;
$nock- >f oo($expect edbj ect) ;

}

?>

Example 9.16. Create a mock object with cloning parameter s enabled

<?php
use PHPUni t\ Fr anmewor k\ Test Case;

cl ass FooTest extends Test Case

{
public function testldentical ObjectPassed()
{
$cl oneArgunents = true;
$nock = $t hi s->get MockBui | der (st dd ass: : cl ass)
- >enabl eAr gunent C oni ng()
- >get Mock();
}

67

Test Doubles

}

?>

TableA.1, “Constraints” showsthe constraintsthat can be applied to method argumentsand Table 9.1,
“Matchers’ shows the matchers that are available to specify the number of invocations.

Table9.1. Matchers

Matcher Meaning

PHPUNni t _ Franmewor k_ MockObj ect _ |Returns a matcher that matches when the method

Mat cher _ Anyl nvokedCount any() itisevaluated for is executed zero or more
times.

PHPUni t _ Franewor k_ MockObj ect _ |Returns amatcher that matches when the method

Mat cher _ | nvokedCount never () itisevauated for is never executed.

PHPUNni t _ Framewor k_ MockObj ect _ |Returns a matcher that matches when the method

Mat cher _ | nvokedAt Least Once it isevaluated for is executed at least once.

at Least Once()
PHPUNni t _ Framewor k_ MockCObj ect | Returns amatcher that matches when the method

Mat cher _ | nvokedCount once() it isevaluated for is executed exactly once.
PHPUNni t _ Franmewor k_ MockOb- Returns a matcher that matches when the method
j ect _ Matcher | nvokedCount it isevaluated for is executed exactly $count
exactly(int $count) times.
PHPUni t _ Franewor k_ MockObj ect _ |Returns amatcher that matches when the method
Mat cher _ | nvokedAt I ndex at (i nt it isevaluated for isinvoked at the given $i n-
$i ndex) dex.

Note

The $i ndex parameter for the at () matcher refers to the index, starting at zero, in all
method invocations for a given mock object. Exercise caution when using this matcher as it
can lead to brittle tests which are too closely tied to specific implementation details.

As mentioned in the beginning, when the defaults used by the cr eat eMbck() method to generate
the test double do not match your needs then you can use the get MockBui | der ($t ype) method
to customize the test double generation using a fluent interface. Here is a list of methods provided
by the Mock Builder:

* set Methods(array $nethods) can be called on the Mock Builder object to specify the
methods that are to be replaced with a configurable test double. The behavior of the other methods
isnot changed. If you call set Met hods(nul |), then no methods will be replaced.

» setConstructorArgs(array $args) can be caled to provide a parameter array that is
passed to the original class' constructor (which is not replaced with a dummy implementation by
default).

» set MockC assName($nane) can be used to specify aclass namefor the generated test double
class.

» di sabl eOri gi nal Const ruct or () can beused to disable the call to the original class con-
structor.

o di sabl eOri gi nal A one() canbeusedtodisablethecall totheoriginal class clone construc-
tor.

« di sabl eAut ol oad() canbeusedtodisable _aut ol oad() duringthe generation of the test
double class.

68

Test Doubles

Prophecy

Prophecy [https://github.com/phpspec/prophecy] isa"highly opinionated yet very powerful and flex-
ible PHP object mocking framework. Though initially it was created to fulfil phpspec2 needs, it is
flexible enough to be used inside any testing framework out there with minimal effort".

PHPUnNIt has built-in support for using Prophecy to create test doubles. Example 9.17, “Testing that
amethod gets called once and with a specified argument” shows how the same test shown in Exam-
ple 9.11, “Testing that a method gets called once and with a specified argument” can be expressed
using Prophecy's philosophy of prophecies and revelations:

Example 9.17. Testing that a method gets called once and with a specified
argument

<?php
use PHPUni t\ Fr anewor k\ Test Case;

cl ass Subj ect Test extends Test Case

{
public function testCbserversAreUpdated()
{
$subj ect = new Subject(' My subject');
$observer = $this->prophesi ze(Cbserver:: cl ass);
$obser ver - >updat e(' sonet hi ng') - >shoul dBeCal | ed() ;
$subj ect - >at t ach($observer->reveal ());
$subj ect - >doSonet hi ng() ;
}
}
?>

Please refer to the documentation [https://github.com/phpspec/prophecy#how-to-use-it] for Prophecy
for further details on how to create, configure, and use stubs, spies, and mocks using this alternative
test double framework.

Mocking Traits and Abstract Classes

The get MockFor Trai t () method returns a mock object that uses a specified trait. All abstract
methods of the given trait are mocked. This allows for testing the concrete methods of atrait.

Example 9.18. Testing the concrete methods of a trait

<?php
use PHPUni t\ Fr anewor k\ Test Case;

trait AbstractTrait
{

69

https://github.com/phpspec/prophecy
https://github.com/phpspec/prophecy
https://github.com/phpspec/prophecy#how-to-use-it
https://github.com/phpspec/prophecy#how-to-use-it

Test Doubles

public function concreteMethod()

{
return $this->abstract Met hod();
}
public abstract function abstract Met hod();
}
class TraitC assTest extends Test Case
{
public function testConcreteMethod()
{
$nock = $t hi s->get MockFor Trait(AbstractTrait::class);
$nock- >expect s($t hi s->any())
->net hod(' abst ract Met hod')
->W || ($this->returnVal ue(true));
$t hi s- >assert True($nock- >concret eMet hod()) ;
}
}
?>

The get MockFor Abst ract C ass() method returns a mock object for an abstract class. All
abstract methods of the given abstract class are mocked. This allows for testing the concrete methods
of an abstract class.

Example 9.19. Testing the concr ete methods of an abstract class

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

abstract class AbstractC ass

{
public function concreteMethod()
{
return $this->abstract Method();
}
public abstract function abstract Met hod();
}
cl ass Abstract C assTest extends Test Case
{
public function testConcreteMethod()
{
$stub = $t hi s- >get MockFor Abstract C ass(Abstract d ass: : cl ass);
$st ub- >expect s($t hi s->any())
->net hod(' abst ract Met hod')
->Wi | | ($this->returnVal ue(true));
$t hi s- >assert True($st ub- >concr et eMet hod()) ;
}
}
?>

Stubbing and Mocking Web Services

When your application interactswith aweb service you want to test it without actually interacting with
the web service. To make the stubbing and mocking of web services easy, the get Mock Fr oné -

70

Test Doubles

dl () canbeusedjust likeget Mock() (seeabove). Theonly differenceisthat get MockFr omAs -
dl () returnsastub or mock based on aweb service description in WSDL and get Mock() returns
astub or mock based on a PHP class or interface.

Example 9.20, “ Stubbing a web service” shows how get MockFr omAsdl () can be used to stub,
for example, the web service described in Googl eSear ch. wsdl .

Example 9.20. Stubbing a web service

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Googl eTest extends Test Case

{

public function testSearch()
{

$googl eSearch = $t hi s- >get MockFr omAsdl (
' Googl eSearch. wsdl ', ' Googl eSear ch

);

$directoryCategory = new stdd ass
$di rect oryCat egory->f ul | Vi ewabl eNane = "'
$di rect or yCat egor y- >speci al Encoding = '';

$el enent = new stdd ass

$el enent - >sunmary = "' ;

$el ement - >URL = ' https://phpunit.de/’
$el enent - >sni ppet = "'...";
$elenent->title = ' PHPUni t </ b>'

$el enent - >cachedSi ze = ' 11k';
$el enent - >r el at edl nf or mati onPresent = true
$el enent - >host Nane = ' phpunit.de';

$el enent - >di rect oryCat egory = $directoryCat egory;
$el enent - >directoryTitle = '"';

$result = new stdd ass

$resul t->docunentFiltering = fal se
$resul t->searchComments = '';

$resul t - >esti mat edTot al Resul t sCount = 3. 9000
$resul t->esti mat el sExact = fal se;
$resul t->resul tEl ements = [$el enent];
$resul t->searchQuery = ' PHPUni t'
$result->startlndex = 1;
$result->endlndex = 1

$resul t->searchTips = '"';
$result->directoryCategories = [];
$resul t->searchTi me = 0.248822

$googl eSear ch- >expect s($t hi s- >any())
->net hod(' doGoogl eSear ch')
->wi || ($this->returnVal ue($result));

$t hi s- >assert Equal s(
$resul t,
$googl eSear ch- >doGoogl eSear ch(
' 00000000000000000000000000000000'
" PHPUNI t ',
0,
1

71

Test Doubles

Mocking the Filesystem

vfsStream [https://github.com/mikey179/vfsStream] is a stream wrapper [http://www.php.net/
streams] for avirtual filesystem [http://en.wikipedia.org/wiki/Virtua_file system] that may be help-
ful in unit teststo mock the real filesystem.

Simply add a dependency on i key 179/ vf sSt r eamto your project's conposer . j son fileiif
you use Composer [https.//getcomposer.org/] to manage the dependencies of your project. Hereis a
minimal example of aconposer . j son file that just defines a devel opment-time dependency on

PHPUnit 4.6 and vfsStream:
{
"require-dev": {
"phpuni t/phpunit”: "~4.6",
"m keyl79/vfsStreant: "~1"

}

Example 9.21, “A classthat interacts with the filesystem” shows a classthat interacts with the filesys-
tem.

Example 9.21. A classthat interactswith the filesystem

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Exanpl e

{
protected $id;
protected $directory;
public function _ construct($id)
{
$this->id = $id;
}
public function setDirectory($directory)
{
$this->directory = $directory . DI RECTORY_SEPARATOR . $this->id;
if (!file_exists($this->directory)) {
nkdi r ($thi s->directory, 0700, true)
}
}
}?>

Without avirtual filesystem such as vfsStream we cannot test theset Di r ect or y() method iniso-
lation from external influence (see Example 9.22, “ Testing a class that interacts with the filesystem™).

72

https://github.com/mikey179/vfsStream
https://github.com/mikey179/vfsStream
http://www.php.net/streams
http://www.php.net/streams
http://www.php.net/streams
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Virtual_file_system
https://getcomposer.org/
https://getcomposer.org/

Test Doubles

Example 9.22. Testing a class that interacts with the filesystem

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Exanpl eTest extends Test Case

{
protected function setUp()
{
if (file_ exists(dirnanme(__FILE) . "/id")) {
rodir(dirnanme(__FILE) . '/id")
}
}
public function testDirectorylsCreated()
{
$exanpl e = new Exanple('id")
$t hi s- >assertFal se(file_exists(dirname(__FILE_) . '/id"))
$exanpl e->setDirectory(dirname(__FILE));
$t hi s->assert True(file_exists(dirname(__FILE) . '"/id"));
}
protected function tearDown()
{
if (file_ exists(dirnanme(__FILE) . "/id")) {
rodir(dirnanme(__FILE) . '/id")
}
}
}
?>

The approach above has several drawbacks:

» Aswithany external resource, there might be intermittent problemswith the filesystem. This makes
tests interacting with it flaky.

e Intheset Up() andt ear Down() methods we have to ensure that the directory does not exist
before and after the test.

» When the test execution terminates beforethe t ear Down() method isinvoked the directory will
stay in the filesystem.

Example 9.23, “Maocking the filesystem in atest for a class that interacts with the filesystem” shows
how vfsStream can be used to mock the filesystemin atest for aclassthat interactswith the filesystem.

Example 9.23. Mocking thefilesystem in atest for a classthat interactswith the
filesystem

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass Exanpl eTest extends Test Case

{
public function setUp()

{
vfsStreamW apper: :register();

vf sStreamW apper: : set Root (new vfsStreanDi rectory(' exanpleDir'))
}

public function testDirectorylsCreated()

{

73

Test Doubles

}

$exanpl e = new Exanple('id');
$t hi s- >assert Fal se(vfsStreanmW apper: : get Root ()->hasChild('id));

$exanpl e->set Directory(vfsStream :url (' exanpleDir'));
$t hi s- >assert True(vfsStream apper: : get Root()->hasChild('id"));

?>

This has several advantages:

The test itself is more concise.

vfsStream gives the test developer full control over what the filesystem environment looks like to
the tested code.

Since the filesystem operations do not operate on the real filesystem anymore, cleanup operations
inat ear Down() method are no longer required.

74

Chapter 10. Testing Practices

Y ou can alwayswrite moretests. However, you will quickly find that only afraction
of the tests you can imagine are actually useful. What you want is to write tests that
fail even though you think they should work, or tests that succeed even though you
think they should fail. Another way to think of it isin cost/benefit terms. Y ou want
to write tests that will pay you back with information.

—Erich Gamma

During Development

When you need to make a change to the internal structure of the software you are working on
to make it easier to understand and cheaper to modify without changing its observable behav-
ior, a test suite is invauable in applying these so called refactorings [http://martinfowler.com/bli-
ki/DefinitionOf Refactoring.html] safely. Otherwise, you might not notice the system breaking while
you are carrying out the restructuring.

The following conditions will help you to improve the code and design of your project, while using
unit tests to verify that the refactoring's transformation steps are, indeed, behavior-preserving and do
not introduce errors:

1. All unit tests run correctly.

2. The code communicates its design principles.

3. The code contains no redundancies.

4. The code contains the minimal number of classes and methods.

When you need to add new functionality to the system, write the tests first. Then, you will be done
developing when the test runs. This practice will be discussed in detail in the next chapter.

During Debugging

When you get adefect report, your impulse might beto fix the defect asquickly as possible. Experience
shows that this impulse will not serve you well; it is likely that the fix for the defect causes another
defect.

Y ou can hold your impulse in check by doing the following:
1. Verify that you can reproduce the defect.

2. Find the smallest-scale demonstration of the defect in the code. For example, if a number appears
incorrectly in an output, find the object that is computing that number.

3. Write an automated test that fails now but will succeed when the defect is fixed.
4. Fix the defect.

Finding the smallest reliable reproduction of the defect gives you the opportunity to realy examine
the cause of the defect. The test you write will improve the chances that when you fix the defect, you
really fix it, because the new test reduces the likelihood of undoing the fix with future code changes.
All the tests you wrote before reduce the likelihood of inadvertently causing a different problem.

Unit testing offers many advantages.

» Testing gives code authors and reviewers confidence that patches produce the
correct results.

75

http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html
http://martinfowler.com/bliki/DefinitionOfRefactoring.html

Testing Practices

 Authoring testcases is a good impetus for devel opers to discover edge cases.

» Testing provides a good way to catch regressions quickly, and to make sure that
no regression will be repeated twice.

* Unit tests provide working examples for how to use an APl and can significantly
aid documentation efforts.

Overadl, integrated unit testing makes the cost and risk of any individual change
smaller. It will allow the project to make[...] major architectural improvements...]
quickly and confidently.

—Benjamin Smedberg

76

Chapter 11. Code Coverage Analysis

In computer science, code coverage is a measure used to describe the degree to
which the source code of a program is tested by a particular test suite. A program
with high code coverage has been more thoroughly tested and has a lower chance
of containing software bugs than a program with low code coverage.

—Wikipedia

In this chapter you will learn all about PHPUnit's code coverage functionality that provides an in-
sight into what parts of the production code are executed when the tests are run. It makes use of the
PHP_CodeCoverage [https://github.com/sebasti anbergmann/php-code-coverage] component, which
in turn leverages the code coverage functionality provided by the Xdebug [http://xdebug.org/] exten-
sion for PHP.

Note

Xdebug is not distributed as part of PHPUnit. If you receive a notice while running tests
that the Xdebug extension is not loaded, it means that Xdebug is either not installed or not
configured properly. Before you can use the code coverage analysis featuresin PHPUnit, you
should read the Xdebug installation guide [http://xdebug.org/docs/install].

PHPUnNIt can generate an HTM L -based code coverage report aswell as XML -based logfileswith code
coverage information in various formats (Clover, Crap4J, PHPUnit). Code coverage information can
also be reported as text (and printed to STDOUT) and exported as PHP code for further processing.

Please refer to Chapter 3, The Command-Line Test Runner for alist of commandline switches that
control code coverage functionality as well as the section called “Logging” for the relevant configu-
ration settings.

Software Metrics for Code Coverage

Various software metrics exist to measure code coverage:

Line Coverage The Line Coverage software metric measures whether each ex-
ecutable line was executed.

Function and Method Coverage The Function and Method Coverage software metric mea-
sures whether each function or method has been invoked.
PHP_CodeCoverage only considers a function or method as
covered when all of its executable lines are covered.

Class and Trait Coverage The Class and Trait Coverage software metric measures
whether each method of a class or trait is covered.
PHP_CodeCoverage only considers a class or trait as covered
when all of its methods are covered.

Opcode Coverage The Opcode Cover age software metric measures whether each
opcode of a function or method has been executed while run-
ning the test suite. A line of code usually compiles into more
than one opcode. Line Coverage regards a line of code as cov-
ered as soon as one of its opcodes is executed.

Branch Coverage The Branch Coverage software metric measures whether the
boolean expression of each control structure evaluated to both
true andf al se whilerunning the test suite.

Path Coverage The Path Coverage software metric measures whether each of
the possible execution paths in a function or method has been

77

https://github.com/sebastianbergmann/php-code-coverage
https://github.com/sebastianbergmann/php-code-coverage
http://xdebug.org/
http://xdebug.org/
http://xdebug.org/docs/install
http://xdebug.org/docs/install

Code Coverage Analysis

followed while running the test suite. An execution path is a
unique sequence of branches from the entry of the function or
method to its exit.

Change Risk Anti-Patterns (CRAP) The Change Risk Anti-Patterns (CRAP) Index is calculated

Index based on the cyclomatic complexity and code coverage of aunit
of code. Code that is not too complex and has an adequate test
coveragewill havealow CRAPindex. The CRAPindex can be
lowered by writing tests and by refactoring the code to lower
its complexity.

Note

The Opcode Coverage, Branch Coverage, and Path Coverage software metrics are not yet
supported by PHP_CodeCoverage.

Whitelisting Files

It is mandatory to configure a whitelist for telling PHPUnit which sourcecode files to include in the
code coverage report. This can either be done using the - - whi t el i st commandline option or via
the configuration file (see the section called “Whitelisting Files for Code Coverage”).

Optionally, all whitelisted files can be added to the code coverage report by setting
addUncover edFi | esFromi tel i st="true" inyour PHPUnit configuration (see the sec-
tion called “Whitelisting Filesfor Code Coverage”). Thisalowstheinclusion of filesthat arenot tested
yet at all. If you want to get information about which lines of such an uncovered file are executable, for
instance, you also need to set pr ocessUncover edFi | esFromihi tel i st="true" inyour
PHPUnNit configuration (see the section called “Whitelisting Files for Code Coverage”).

Note

Please note that the loading of sourcecode files that is performed when
processUncover edFi | esFromhi telist="true" is set can cause problems
when a sourcecode file contains code outside the scope of a class or function, for instance.

Ignoring Code Blocks

Sometimes you have blocks of code that you cannot test and that you may want to ignore during
code coverage analysis. PHPUnit lets you do this using the @ odeCover agel gnor e, @ode-
Cover agel gnoreStart and @odeCover agel gnor eEnd annotations as shown in Exam-
ple 11.1, “Using the @ odeCover agel gnor e, @odeCover agel gnoreSt art and @ode-
Cover agel gnor eEnd annotations’.

Example 11.1. Using the @odeCover agel gnor e,
@odeCover agel gnoreSt art and @odeCover agel gnor eEnd
annotations

<?php

use PHPUni t\ Fr anewor k\ Test Case

cl ass Foo

{

public function bar()

{

78

Code Coverage Analysis

}
}
cl ass Bar
{
public function foo()
{
}
}
if (false) {
print '*';
}
exit;
?>

Theignored lines of code (marked as ignored using the annotations) are counted as executed (if they
are executable) and will not be highlighted.

Specifying Covered Methods

The @over s annotation (see Table B.1, “ Annotationsfor specifying which methods are covered by
atest”) can be used in the test code to specify which method(s) atest method wantsto test. If provided,
only the code coverage information for the specified method(s) will be considered. Example 11.2,
“Tests that specify which method they want to cover” shows an example.

Example 11.2. Teststhat specify which method they want to cover

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass BankAccount Test extends Test Case
{
prot ected $ba

protected function set Up()

{
}

$t hi s->ba = new BankAccount

public function testBal ancelslnitiallyZero()

{
}

$t hi s- >assert Equal s(0, $this->ba->getBal ance());

public function testBal anceCannot BeconeNegati ve()

{

try {
$t hi s- >ba- >wi t hdr awivbney(1) ;
}

79

Code Coverage Analysis

cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());

return;

}

$this->fail();

public function testBal anceCannot BeconeNegati ve2()

{
try {
$t hi s- >ba- >deposi t Money(-1);
}
cat ch (BankAccount Exception $e) {
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
return;
}
$this->fail();
}

public function testDepositWthdrawbney()

{
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
$t hi s- >ba- >deposi t Money(1);
$t hi s- >assert Equal s(1, $this->ba->getBal ance());
$t hi s- >ba- >wi t hdr awivbney(1) ;
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}
}
?>

Itisalso possibleto specify that atest should not cover any method by using the @ over sNot hi ng
annotation (see the section called “ @coversNothing”). This can be helpful when writing integration
tests to make sure you only generate code coverage with unit tests.

Example 11.3. A test that specifiesthat no method should be covered

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Guest bookl ntegrati onTest extends PHPUni t _Ext ensi ons_Dat abase_Test Case

{

public function testAddEntry()

{
$guest book = new Guest book();

$guest book- >addEnt ry("suzy", "Hello world!");

80

Code Coverage Analysis

$queryTabl e = $t hi s- >get Connection()->creat eQueryTabl e(
' guest book', ' SELECT * FROM guest book’
e

$expect edTabl e = $t hi s->creat eFl at Xnl Dat aSet (" expect edBook. xm ")
- >get Tabl e(" guest book") ;

$t hi s- >assert Tabl esEqual ($expect edTabl e, $queryTabl e) ;

Edge Cases

This section shows noteworthy edge cases that |ead to confusing code coverage information.

Example 11.4.

<?php

use PHPUnI t\ Fr amewor k\ Test Case

/] Because it is "line based" and not statenent base coverage
/[l one line will always have one coverage status

if (false) this_function_call_shows_up_as_covered();

// Due to how code coverage works internally these two |ines are speci al

[/ This Iine will show up as non execut abl e
if (fal se)
[/ This Iine will show up as covered because it is actually the

/'l coverage of the if statenent in the |line above that gets shown here
wi || _al so_show up_as_covered();

/]l To avoid this it is necessary that braces are used
if (false) {
this_call_will_never_show up_as_covered();

81

Chapter 12. Other Uses for Tests

Once you get used to writing automated tests, you will likely discover more uses for tests. Here are
some exampl es.

Agile Documentation

Typically, in aproject that is developed using an agile process, such as Extreme Programming, the
documentation cannot keep up with the frequent changes to the project's design and code. Extreme
Programming demands collective code ownership, so all developers need to know how the entire
system works. If you are disciplined enough to consequently use "speaking names' for your tests that
describe what a class should do, you can use PHPUnit's TestDox functionality to generate automated
documentation for your project based on its tests. This documentation gives developers an overview
of what each class of the project is supposed to do.

PHPUnit's TestDox functionality looks at atest classand all the test method names and converts them
from camel case PHP names to sentences: t est Bal ancel sl nitial | yZer o() becomes "Bal-
ance isinitialy zero". If there are severa test methods whose names only differ in a suffix of one
or more digits, such ast est Bal anceCannot BecomeNegat i ve() andt est Bal anceCan-
not BeconeNegat i ve2() , the sentence "Balance cannot become negative" will appear only once,
assuming that all of these tests succeed.

Let ustake alook at the agile documentation generated for aBank Account class:

phpunit --testdox BankAccount Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

BankAccount
[x] Balance is initially zero
[x] Bal ance cannot becomne negative

Alternatively, the agile documentation can be generated in HTML or plain text format and written to
afileusingthe- -t est dox- ht m and- -t est dox-t ext arguments.

Agile Documentation can be used to document the assumptions you make about the external packages
that you use in your project. When you use an external package, you are exposed to the risks that the
package will not behave as you expect, and that future versions of the package will change in subtle
ways that will break your code, without you knowing it. Y ou can address these risks by writing a test
every time you make an assumption. If your test succeeds, your assumption isvalid. If you document
al your assumptions with tests, future releases of the external package will be no cause for concern:
if the tests succeed, your system should continue working.

Cross-Team Tests

When you document assumptionswith tests, you own thetests. The supplier of the package -- who you
make assumptions about -- knows nothing about your tests. If you want to have a closer relationship
with the supplier of a package, you can use the tests to communicate and coordinate your activities.

When you agree on coordinating your activities with the supplier of a package, you can write the
tests together. Do this in such a way that the tests reveal as many assumptions as possible. Hidden
assumptions are the death of cooperation. With the tests, you document exactly what you expect from
the supplied package. The supplier will know the package is complete when all the tests run.

By using stubs (see the chapter on "Mock Objects’, earlier in this book), you can further decouple
yourself from the supplier: Thejob of the supplier isto make the tests run with the real implementation
of the package. Y our job isto make the tests run for your own code. Until such time as you have the

82

Other Uses for Tests

real implementation of the supplied package, you use stub objects. Following this approach, the two
teams can devel op independently.

83

Chapter 13. Logging

PHPUnit can produce several types of logfiles.

Test Results (XML)

The XML logfilefor test results produced by PHPUnit isbased upon the one used by the JUnit task for
Apache Ant [http://ant.apache.org/manual/Taskg/junit.html]. The following example shows the XML
logfile generated for the testsin Ar r ay Test :

<?xm version="1.0" encodi ng="UTF-8"?>
<testsuites>
<testsuite nane="ArrayTest"
file="/hone/sb/ ArrayTest. php"
tests="2"
assertions="2"
failures="0"
errors="0"
ti me="0.016030" >
<t est case nane="t est NewAr r ayl sEnpt y"
cl ass="ArrayTest"
file="/hone/sb/ArrayTest. php"
line="6"
assertions="1"
ti ne="0.008044"/ >
<t est case nanme="t est Arr ayCont ai nsAnEl enent "
cl ass="ArrayTest"
file="/hone/sb/ArrayTest. php"
i ne="15"
assertions="1"
ti ne="0.007986"/ >
</testsuite>
</testsuites>

The following XML logfile was generated for two tests, t est Fai | ure andt est Err or, of atest
case classnamed Fai | ur eEr r or Test and shows how failures and errors are denoted.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<testsuites>
<testsuite nane="Fail ureErrorTest"
file="/home/sb/Fail ureErrorTest. php"
tests="2"
assertions="1"
failures="1"
errors="1"
time="0.019744" >
<t est case name="test Fail ure"
cl ass="Fail ureError Test"
file="/hone/sb/ Fail ureErrorTest. php"
line="6"
assertions="1"
time="0.011456">
<failure type="PHPUnit_Framewor k_ Expectati onFai | edException">
test Fail ure(Fail ureErrorTest)
Fai |l ed asserting that & t;integer:2> matches expected value & t;integer: 1> ;

/ hone/ sb/ Fai | ur eError Test . php: 8
</failure>
</testcase>
<t est case nane="testError"
class="Fai |l ureErrorTest"

84

http://ant.apache.org/manual/Tasks/junit.html
http://ant.apache.org/manual/Tasks/junit.html
http://ant.apache.org/manual/Tasks/junit.html

Logging

Test

Test

file="/hone/sb/Fail ureErrorTest. php"
l'ine="11"
assertions="0"
time="0.008288">
<error type="Exception">testError(FailureErrorTest)
Excepti on:

/ hone/ sb/ Fai | ur eError Test . php: 13
</error>
</testcase>
</testsuite>
</testsuites>

Results (TAP)

The Test Anything Protocol (TAP) [http://testanything.org/] is Perl's simple text-based interface be-
tween testing modules. The following example shows the TAP logfile generated for the testsin Ar -
rayTest:

TAP version 13

ok 1 - testNewArrayl senpty(ArrayTest)

ok 2 - testArrayContai nsAnEl enent (ArrayTest)
1..2

The following TAP logfile was generated for two tests, t est Fai | ure andt est Err or, of atest
case class named Fai | ur eEr r or Test and shows how failures and errors are denoted.

TAP version 13
not ok 1 - Failure: testFailure(Fail ureErrorTest)

message: 'Failed asserting that <integer:2> matches expected val ue <integer:1>.'

severity: fail
dat a:
got: 2
expected: 1

not ok 2 - Error: testError(FailureErrorTest)
1..2

Results (JSON)

The JavaScript Object Notation (JSON) [http://www.json.org/] is a lightweight data-interchange for-
mat. The following example shows the JSON messages generated for the testsin Arr ay Test :

{"event":"suiteStart","suite":"ArrayTest", "tests": 2}
{"event":"test", 6 "suite":"ArrayTest",
"test":"test NewArrayl senpty(ArrayTest)", "status": " pass",
"tinme":0.000460147858, "trace":[], "nmessage":""}
{"event":"test", 6 "suite":"ArrayTest",
"test":"test ArrayCont ai nSAnEl enent (ArrayTest)", "status": "pass",
"tinme":0.000422954559, "trace":[], "nmessage":""}

The following JSON messages were generated for two tests, t est Fai | ure andt est Error, of a
test case class named Fai | ur eEr r or Test and show how failures and errors are denoted.

{"event":"suiteStart","suite":"FailureErrorTest","tests": 2}
{"event":"test",6 "suite":"FailureErrorTest",
"test":"testFailure(FailureErrorTest)","status":"fail",
"time":0.0082459449768066, "trace": [],
"message": "Fail ed asserting that <integer:2> is equal to <integer:1>."}

85

http://testanything.org/
http://testanything.org/
http://www.json.org/
http://www.json.org/

Logging

{"event":"test",6 "suite":"FailureErrorTest",
"test":"testError(FailureErrorTest)","status":"error",
"time":0.0083680152893066, "trace":[], "nmessage":""}

Code Coverage (XML)

The XML format for code coverage information logging produced by PHPUNit isloosely based upon
the one used by Clover [http://www.atlassian.com/software/clover/]. The following example shows
the XML logfile generated for the testsin Bank Account Test :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cover age generat ed="1184835473" phpunit="3.6.0">
<proj ect name="BankAccount Test" ti nestanp="1184835473">
<fil e name="/home/ sb/ BankAccount . php" >
<cl ass nane="BankAccount Excepti on">
<metrics nethods="0" coverednet hods="0" statenents="0"
cover edst at enent s="0" el ement s="0" cover edel enent s="0"/>
</ cl ass>
<cl ass nane="BankAccount ">
<metrics nethods="4" coverednet hods="4" statenents="13"
cover edst at enent s="5" el ement s="17" cover edel enent s="9"/>
</ cl ass>
<line num="77" type="nmethod" count="3"/>
<line num="79" type="stnt" count="3"/>
<line num="89" type="nethod" count="2"/>
<line num="91" type="stnt" count="2"/>
<line num="92" type="stnt" count="0"/>
<line num="93" type="stnt" count="0"/>
<line num="94" type="stnt" count="2"/>
<line num="96" type="stnt" count="0"/>
<line num="105" type="nmethod" count="1"/>
<line num="107" type="stnmt" count="1"/>
<line num="109" type="stnt" count="0"/>
<line num="119" type="nethod" count="1"/>
<line num="121" type="stnmt" count="1"/>
<line num="123" type="stnt" count="0"/>
<metrics |oc="126" ncl oc="37" classes="2" nethods="4" cover ednet hods="4"
st at enent s="13" coveredst at ement s="5" el enent s="17"
cover edel ement s="9"/ >
</file>
<metrics files="1" |oc="126" ncloc="37" cl asses="2" nethods="4"
cover edret hods="4" st atenment s="13" cover edst at enent s="5"
el ement s="17" cover edel enent s="9"/>
</ pr oj ect >
</ cover age>

Code Coverage (TEXT)

Human readable code coverage output for the command-line or a text file. The aim of this output
format is to provide a quick coverage overview while working on a small set of classes. For bigger
projects this output can be useful to get an quick overview of the projects coverage or when used with
the--filter functionality. When used from the command-line by writing to php: / / st dout
thiswill honor the - - col or s setting. Writing to standard out is the default option when used from
the command-line. By default this will only show files that have at least one covered line. This can
only be changed viathe showUncover edFi | es xml configuration option. See the section called
“Logging”. By default all files and their coverage status are shown in the detailed report. This can be
changed viathe showOnl y Surmmar y xml configuration option.

86

http://www.atlassian.com/software/clover/
http://www.atlassian.com/software/clover/

Chapter 14. Extending PHPUnNiIt

PHPUnit can be extended in various ways to make the writing of tests easier and customize the feed-
back you get from running tests. Here are common starting points to extend PHPUnit.

Subclass phpunit\framework\TestCase

Write custom assertions and utility methods in an abstract subclass of phpuni t\frane-
wor k\ Test Case and derive your test case classes from that class. Thisis one of the easiest ways
to extend PHPUnit.

Write custom assertions

When writing custom assertions it is the best practice to follow how PHPUnit's own assertions
are implemented. As you can see in Example 14.1, “The assertTrue() and isTrue() methods of
the PHPUNit_Framework Assert class’, the assert True() method isjust a wrapper around the
i sTrue() and assert That () methods. i sTrue() creates a matcher object that is passed on
toassert That () for evaluation.

Example 14.1. The assertTrue() and isTrug) methods of the
PHPUnNIit_Framework _Assert class

<?php
use PHPUnI t\ Fr amewor k\ Test Case

abstract class PHPUnit_Franmework_Assert

{
public static function assertTrue($condition, $nmessage = '"')
{
sel f::assert That ($condi tion, self::isTrue(), $nessage)
}
public static function isTrue()
{
return new PHPUNni t _Framewor k_Constraint _|sTrue
}
}?>

87

Extending PHPUnit

Example 14.2, “The PHPUnit Framework Constraint IsTrue class’ shows how
PHPUni t _Framewor k_Constrai nt _| sTrue extends the abstract base class for matcher ob-
jects (or constraints), PHPUni t _Fr amewor k_Constr ai nt .

Example 14.2. The PHPUnit_Framework_Constraint_IsTrue class

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass PHPUni t _Franmewor k_Constraint I sTrue extends PHPUni t _Framewor k_Constrai nt

{
public function matches($ot her)
{
return $other === true
}
public function toString()
{
return 'is true';
}
}?>

The effort of implementing the assert True() and i sTrue() methods as well as the
PHPUni t _Franmewor k_Constrai nt _| sTrue class yields the benefit that assert That ()

automatically takes care of evaluating the assertion and bookkeeping tasks such as counting it for sta-
tistics. Furthermore, thei sTr ue() method can be used as amatcher when configuring mock objects.

Implement PHPUnNIit_Framework TestListener

Example 14.3, “A simple test listener” shows a simple implementation of the
PHPUni t _Framewor k_Test Li st ener interface.

Example 14.3. A simpletest listener

<?php
use PHPUnI t\ Framewor k\ Test Case

class Sinpl eTestLi stener inplenments PHPUnIit _Framewor k_Test Li st ener

{ public function addError(PHPUnit _Framewor k_Test $test, Exception $e, $tine)
{ printf("Error while running test '%'.\n", $test->getName());
}
public function addFail ure(PHPUNni t _Franework_Test $test, PHPUnit_Framewor k_Assertion
{ printf("Test '%' failed.\n", $test->getNane())
}

88

Extending PHPUnit

public function addl nconpl et eTest (PHPUni t _Franmewor k_Test $test, Exception $e, $tine)
{

}

public function addRi skyTest (PHPUNni t _Framewor k_Test $test, Exception $e, $tine)
{

}

public function addSki ppedTest (PHPUni t _Franewor k_Test $test, Exception $e, $tine)
{

printf("Test '%"' is inconplete.\n", $test->getNane());

printf("Test '%' is deened risky.\n", $test->getNanme());

printf("Test '%' has been skipped.\n", $test->getNane());

}

public function startTest(PHPUnit_Franmework_Test $test)

{ printf("Test '%' started.\n", $test->getNane());

}

public function endTest (PHPUnit_Franmewor k_Test $test, $tine)
; printf("Test '%' ended.\n", $test->getNanme());

public function startTestSuite(PHPUnit_Framework _TestSuite $suite)

{
}

public function endTest Suite(PHPUNni t_Framework_Test Suite $suite)

{
}

printf("TestSuite '%' started.\n", $suite->getNane());

printf("TestSuite ' %' ended.\n", $suite->getNanme());

Example 144, *“Using base test Ilistener” shows how to subclass the
PHPUNi t _Framewor k_BaseTest Li st ener abstract class, which lets you specify only thein-
terface methods that are interesting for your use case, while providing empty implementations for all
the others.

Example 14.4. Using base test listener

<?php
use PHPUni t\ Fr amewor k\ Test Case

cl ass Short TestLi stener extends PHPUnit _Franmewor k_BaseTest Li st ener

{
public function endTest (PHPUnit_Franewor k_Test $test, $tine)
{
printf("Test '%' ended.\n", $test->getNane());
}
}
?>

Inthe section called “ Test Listeners’ you can see how to configure PHPUniIt to attach your test listener
to the test execution.

89

Extending PHPUnit

Subclass
PHPUnNIt_Extensions_TestDecorator

Y ou can wrap test cases or test suitesin asubclass of PHPUni t _Ext ensi ons_Test Decor at or
and use the Decorator design pattern to perform some actions before and after the test runs.

PHPUnNiIt ships with one concrete test decorator: PHPUni t _Ext ensi ons_Repeat edTest . Itis
used to run atest repeatedly and only count it as a successif al iterations are successful.

Example 145, “The RepeatedTest Decorator” shows a cut-down version of the
PHPUni t _Ext ensi ons_Repeat edTest test decorator that illustrates how to write your own
test decorators.

Example 14.5. The Repeated T est Decor ator

<?php
use PHPUni t\ Fr anewor k\ Test Case;

requi re_once ' PHPUni t/ Ext ensi ons/ Test Decor at or. php' ;

cl ass PHPUni t _Ext ensi ons_Repeat edTest extends PHPUni t _Ext ensi ons_Test Decor at or

{
private $tinesRepeat = 1
public function __construct (PHPUnit _Franework_Test $test, $tinesRepeat = 1)
{
parent::__construct ($test);
if (is_integer($tinesRepeat) &&
$timesRepeat >= 0) {
$thi s->ti mresRepeat = $ti mesRepeat
}
}
public function count()
{
return $this->tinesRepeat * $this->test->count();
}
public function run(PHPUnit_Franmework_TestResult $result = null)
{
if ($result === null) {
$result = $this->createResult()
}
for ($i = 0; $i < $this->tinesRepeat && ! $result->shoul dStop(); $i++) {
$t hi s->test->run($resul t)
}
return $result;
}
}
?>

Implement PHPUnNIit_Framework_ Test

The PHPUNi t _Franmewor k_Test interface is narrow and easy to implement. You can write
an implementation of PHPUni t _Fr amewor k_Test that is simpler than phpuni t\ f r ame-
wor k\ Test Case and that runs data-driven tests, for instance.

90

Extending PHPUnit

Example 14.6, “A data-driven test” shows a data-driven test case class that compares values from a
file with Comma-Separated Vaues (CSV). Each line of such afile looks like f oo; bar , where the
first value is the one we expect and the second value is the actual one.

Example 14.6. A data-driven test

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass DataDrivenTest inplenments PHPUnit_Framewor k_Test

{
private $lines;
public function __construct($dataFile)
{
$this->lines = file($dataFile);
}
public function count()
{
return 1
}
public function run(PHPUNni t_Framework_Test Result $result = null)
{
if ($result === null) {
$result = new PHPUni t _Franmewor k_Test Resul t ;
}
foreach ($this->lines as $line) {
$result->start Test ($this);
PHP_Timer::start();
$stopTime = nul |
l'ist($expected, $actual) = explode(';', $line);
try {
PHPUNi t _Framewor k_Assert: : assert Equal s(
trin($expected), trim $actual)
)i
}
catch (PHPUnit _Framewor k_AssertionFail edError $e) {
$stopTi me = PHP_Ti mer: :stop();
$resul t->addFai l ure($this, $e, $stopTine)
}
catch (Exception $e) {
$stopTi me = PHP_Ti mer: :stop();
$resul t->addError($this, $e, $stopTine)
}
if ($stopTime === null) {
$stopTi me = PHP_Ti mer: :stop();
}
$resul t->endTest ($this, $stopTine);
}
return $result;
}
}

91

Extending PHPUnit

$test = new DataDrivenTest('data_file.csv');
$result = PHPUnit _Text Ul _Test Runner::run($test);
?>

PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.
.F

Tinme: 0 seconds

There was 1 failure:

1) DataDrivenTest

Fail ed asserting that two strings are equal .
expected string <bar>

di fference < x>

got string <baz>

/ honme/ sb/ Dat aDr i venTest . php: 32

/ honme/ sb/ Dat aDri venTest . php: 53

FAI LURES!
Tests: 2, Failures: 1.

92

Appendix A. Assertions

This appendix lists the various assertion methods that are available.

assertArrayHasKey()

assert ArrayHasKey(m xed $key, array $array[, string $nmessage = ''])
Reports an error identified by $message if $ar r ay does not have the $key.

assert ArrayNot HasKey() istheinverse of this assertion and takes the same arguments.

Example A.1. Usage of assertArrayHasKey()

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass ArrayHasKeyTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert ArrayHasKey(' foo', ["bar' => '"baz'])
}
}
?>

phpunit ArrayHasKeyTest
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ArrayHasKeyTest::testFailure
Fai |l ed asserting that an array has the key 'foo'.

/ hone/ sb/ Arr ayHasKeyTest . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertClassHasAttribute()

assertCl assHasAttri bute(string S$attri buteName, string $classNang[,
string $nmessage = ''])

Reports an error identified by $message if $cl assNane: : at t ri but eName does not exist.

assert Cl assNot HasAttri bute() istheinverse of this assertion and takes the same argu-
ments.

Example A.2. Usage of assertClassHasAttribute()

<?php
use PHPUni t\ Fr anewor k\ Test Case

93

Assertions

cl ass ClassHasAttri buteTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Cl assHasAttri bute(' foo', stdd ass::class);
}
}
?>

phpunit C assHasAttri buteTest
PHPUnit 5.4.0 by Sebastian Bergnann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) dassHasAttributeTest::testFailure
Fai |l ed asserting that class "stdCd ass" has attribute "foo".

/ hone/ sb/ Cl assHasAttri but eTest. php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertArraySubset()

assert ArraySubset (array $subset, array $array[, bool $strict = '",
string $message = ''])

Reports an error identified by $message if $ar r ay does not containsthe $subset .

$strict isaflag used to compare the identity of objects within arrays.

Example A.3. Usage of assertArraySubset()

<?php
use PHPUni t\ Franewor k\ Test Case

cl ass ArraySubset Test extends Test Case

{
public function testFailure()
{
$t hi s- >assert ArraySubset ([' config' => ['key-a', 'key-b']], ['config =>['key-a
}
}
?>

phpunit ArrayHasKeyTest
PHPUNit 4.4.0 by Sebastian Ber gnann.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Epil og\ Epi |l ogTest: :test NoFol | owOpti on
Fai |l ed asserting that an array has the subset Array &0 (

94

Assertions

‘config' => Array &1 (
0 => 'key-a'
1 => 'key-b'
).
/ home/ sb/ Arr aySubset Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertClassHasStaticAttribute()

assertC assHasStati cAttribute(string $attri buteNane, string $cl ass-
Nane[, string $nessage = ''])

Reports an error identified by $message if $cl assNane: : at t ri but eName does not exist.

assert Cl assNot HasSt ati cAttri but e() istheinverse of thisassertion and takes the same
arguments.

Example A.4. Usage of assertClassHasStaticAttribute()

<?php
use PHPUni t\ Fr anewor k\ Test Case;

class ClassHasStaticAttri buteTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Cl assHasStati cAttribute('foo', stdC ass::class);
}
}
?>

phpunit C assHasStaticAttri buteTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) dassHasStaticAttributeTest::testFailure
Fai |l ed asserting that class "stdd ass" has static attribute "foo".

/ home/ sb/ Cl assHasSt ati cAttri buteTest. php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertContains()

assert Contai ns(m xed $needle, |Iterator|array $haystack[, string
$message = ''])

Reports an error identified by $message if $needl e isnot an element of $hayst ack.

assert Not Cont ai ns() istheinverse of this assertion and takes the same arguments.

95

Assertions

assert Attri buteContai ns() andassert Attri but eNot Cont ai ns() areconvenience
wrappersthat useapubl i c, pr ot ect ed, or pri vat e attribute of aclass or object asthe haystack.

Example A.5. Usage of assertContains()

<?php
use PHPUni t\ Fr anewor k\ Test Case

cl ass Cont ai nsTest extends Test Case

{
public function testFail ure()
{
$t hi s- >assertContains(4, [1, 2, 3]);
}
}
?>

phpunit Cont ai nsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsTest::testFailure
Fai l ed asserting that an array contains 4.

/ home/ sb/ Cont ai nsTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Contai ns(string $needl e, string $haystack[, string $nessage =
"', bool ean $i gnoreCase = false])

Reports an error identified by $message if $needl e isnot asubstring of $hayst ack.

If $i gnor eCase ist r ue, thetest will be case insensitive.
Example A.6. Usage of assertContains()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Cont ai nsTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Contai ns(' baz', 'foobar');
}
}
?>

phpunit Cont ai nsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F

Time: 0 seconds, Menory: 5.00M

96

Assertions

There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that 'foobar' contains "baz".

/ home/ sb/ Cont ai nsTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

Example A.7. Usage of assertContains() with $ignoreCase

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Cont ai nsTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Contains(' foo', 'FooBar');
}
public function testCK()
{
$t hi s- >assert Contains('foo', 'FooBar', '', true);
}
}
?>

phpunit Cont ai nsTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F.
Time: 0 seconds, Menory: 2.75M
There was 1 failure:

1) ContainsTest::testFailure
Fai |l ed asserting that 'FooBar' contains "foo".

/ home/ sb/ Cont ai nsTest . php: 6

FAI LURES!
Tests: 2, Assertions: 2, Failures: 1.

assertContainsOnly()

assert Contai nsOnl y(string $type, lterator|array $haystack[, bool ean
$i sNativeType = null, string $nessage = ''])

Reports an error identified by $nmessage if $hayst ack does not contain only variables of type
$t ype.

$i sNat i veType isaflag used to indicate whether $t ype isanative PHP type or not.
assert Not Cont ai nsOnl y() istheinverse of this assertion and takes the same arguments.

assertAttri buteContai nsOnly() and assert Attri but eNot Contai nsOnl y() are
convenience wrappers that use apubl i ¢, prot ect ed, or pri vat e attribute of a class or object
as the haystack.

97

Assertions

Example A.8. Usage of assertContainsOnly()

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass Contai nsOnl yTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Contai nsOnl y('string', ['1", '"2', 3]);
}
}
?>

phpunit Contai nsOnl yTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) ContainsOnlyTest::testFailure
Fai |l ed asserting that Array (

0="'1
1="'2
2 =>3

) contains only values of type "string".
/ home/ sb/ Cont ai nsOnl yTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertContainsOnlyinstancesOf()

assert Contai nsOnl yl nstancesO (string $classnanme, Traversabl e|array
$haystack[, string $message = ''])

Reports an error identified by $nmessage if $hayst ack does not contain only instances of class
$cl assnane.

Example A.9. Usage of assertContainsOnlyl nstancesOf()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Contai nsOnl yl nst ancesOf Test ext ends Test Case

{
public function testFailure()
{
$t hi s- >assert Cont ai nsOnl yl nst ancesOF (
Foo: : cl ass,
[new Foo, new Bar, new Foo]
DE
}
}
?>

phpunit Contai nsOnl yl nst ancesOf Test

98

Assertions

PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.
F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) Contai nsOnl yl nstancesOf Test: :testFailure
Fai |l ed asserting that Array ([0]=> Bar Object(...)) is an instance of class "Foo".

/ home/ sb/ Cont ai nsOnl yl nst ancesOf Test . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertCount()

assert Count ($expect edCount, $haystack[, string $message = ''])

Reports an error identified by $nessage if the number of elementsin $hayst ack is not $ex-
pect edCount .

assert Not Count () istheinverse of this assertion and takes the same arguments.
Example A.10. Usage of assertCount()

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass Count Test extends Test Case

{
public function testFailure()
{
$t hi s- >assert Count (0, ['fo0']);
}
}
?>

phpunit Count Test
PHPUni t 5.4.0 by Sebastian Bergmann and contri butors.

F
Tinme: 0 seconds, Menory: 4.75M
There was 1 failure:

1) CountTest::testFailure
Fai |l ed asserting that actual size 1 natches expected size O.

/ home/ sb/ Count Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEmpty()

assert Enpty(m xed $actual [, string $nessage = ''])

Reports an error identified by $nmessage if $act ual isnot empty.

99

Assertions

assert Not Enpt y() istheinverse of this assertion and takes the same arguments.

assertAttri buteEnpty() and assert Attri but eNot Enpt y() are convenience wrap-
persthat can be appliedto apubl i ¢, pr ot ect ed, or pri vat e attribute of a class or object.

Example A.11. Usage of assertEmpty()

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

cl ass EnptyTest extends TestCase

{
public function testFailure()
{
$this->assert Enpty(['foo']);
}
}
?>

phpunit EnptyTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) EnptyTest::testFailure
Fai l ed asserting that an array is enpty.

/ home/ sb/ Enpt yTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEqualXMLStructure()

assert Equal XM_St r uct ur e(DOVEl enent $expect edEl enent, DOMVEI enent $ac-
tual El ement[, bool ean $checkAttributes = false, string $nessage

1)

Reports an error identified by $message if the XML Structure of the DOMElement in $ac-
t ual El enent isnot equal to the XML structure of the DOMElement in $expect edEl enent .

Example A.12. Usage of assertEqual XML Structure()

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Equal XMLSt ruct ureTest extends Test Case

{
public function testFailureWthDifferentNodeNanes()
{
$expect ed = new DOVEl enent (' fo0');
$actual = new DOVEl enment (' bar');
$t hi s- >assert Equal XM_St ruct ur e($expect ed, $actual);
}

public function testFailureWthDifferentNodeAttributes()

100

Assertions

{
$expect ed = new DOVDocumnent ;
$expect ed- >l oadXM_(' <f oo bar="true" />");
$act ual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo/ >');
$t hi s- >assert Equal XMLSt ruct ur e(
$expected->firstChild, $actual->firstChild, true
IE
}

public function testFailureWthDifferentChildrenCount()

$expect ed = new DOVDocumnent ;
$expect ed- >l oadXM_(' <f oo><bar/ ><bar/ ><bar/ ></fo00>");

$act ual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo><bar/ ></f 00>");

$t hi s- >assert Equal XMLSt ruct ur e(
$expected->firstChild, $actual->firstChild
IE

public function testFailureWthDifferentChildren()

$expect ed = new DOVDocumnent ;
$expect ed- >l oadXM_(' <f oo><bar/ ><bar/ ><bar/ ></fo00>");

$act ual = new DOVDocunent ;
$act ual - >l oadXM_(' <f oo><baz/ ><baz/ ><baz/ ></f 00>');

$t hi s- >assert Equal XMLSt ruct ur e(
$expected->firstChild, $actual->firstChild
IE

phpunit Equal XM_St ruct ur eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

FFFF
Time: 0 seconds, Menory: 5.75M
There were 4 failures:

1) Equal XM_StructureTest::testFailureWthbDifferent NodeNanmes
Fai |l ed asserting that two strings are equal .

--- Expected

+++ Act ual

@ @@
-'foo'
+' bar'

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 9
2) Equal XMLStructureTest::testFailureWthbDifferent NodeAttri butes
Nunmber of attributes on node "foo" does not natch

Fai |l ed asserting that 0 matches expected 1.

/ home/ sb/ Equal XMLSt r uct ur eTest . php: 22

101

Assertions

3) Equal XMLStructureTest::testFailureWthDifferentChildrenCount
Nurmber of child nodes of "foo" differs
Fai |l ed asserting that 1 matches expected 3.

/ hone/ sb/ Equal XM_St r uct ur eTest . php: 35
4) Equal XMLStructureTest::testFailureWthDifferentChildren
Fai |l ed asserting that two strings are equal .

--- Expected
+++ Act ual

@@ @@
- " bar’
+' baz'
/ hone/ sb/ Equal XM_St r uct ur eTest . php: 48

FAI LURES
Tests: 4, Assertions: 8, Failures: 4.

assertEquals()

assert Equal s(m xed $expected, m xed $actual [, string $nmessage ="''])

Reports an error identified by $nessage if the two variables $expect ed and $act ual are not
equal.

assert Not Equal s() istheinverse of this assertion and takes the same arguments.

assert Attri but eEqual s() andassert Attri but eNot Equal s() areconveniencewrap-
persthat useapubl i c, prot ect ed, or pri vat e attribute of aclass or object asthe actual value.

Example A.13. Usage of assertEquals()

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass Equal sTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Equal s(1, 0);
}
public function testFailure2()
{
$t hi s- >assert Equal s(' bar', 'baz')
}
public function testFailure3()
{
$t hi s- >assert Equal s("f oo\ nbar\ nbaz\ n", "foo\nbah\nbaz\n")
}
}
?>

phpunit Equal sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

FFF

Time: 0 seconds, Menory: 5.25M

102

Assertions

There were 3 fail ures:

1) Equal sTest::testFailure
Fai |l ed asserting that 0 matches expected 1.

/ home/ sb/ Equal sTest . php: 6

2) Equal sTest: :testFailure2

Fai l ed asserting that two strings are equal .
--- Expected

+++ Actua

@ @@
- " bar’
+' baz'

/ home/ sb/ Equal sTest . php: 11

3) Equal sTest: :testFailure3

Fai | ed asserting that two strings are equal .
--- Expected

+++ Actua

@ @@
'foo
- bar
+bah
baz

/ home/ sb/ Equal sTest . php: 16

FAI LURES
Tests: 3, Assertions: 3, Failures: 3.

More specialized comparisons are used for specific argument types for $expect ed and $act ual ,
see below.

assert Equal s(fl oat $expected, float $actual[, string $message = ,
float $delta = 0])

Reportsan error identified by $message if thetwo floats$expect ed and $act ual arenot within
$del t a of each other.

Please read "What Every Computer Scientist Should Know About Floating-Point Arithmetic [http://
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html]" to understand why $del t a isnecces-
sary.

Example A.14. Usage of assertEquals() with floats

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass Equal sTest extends Test Case

{ public function testSuccess()
{ $t hi s- >assert Equal s(1.0, 1.1, '', 0.2);
}
public function testFailure()
i $t hi s- >assert Equal s(1.0, 1.1)

103

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Assertions

}

?>

phpunit Equal sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

.F
Time: 0 seconds, Menory: 5.75M
There was 1 failure:

1) Equal sTest::testFailure
Fai |l ed asserting that 1.1 matches expected 1.0.

/ home/ sb/ Equal sTest . php: 11

FAI LURES!
Tests: 2, Assertions: 2, Failures: 1.

assert Equal s(DOVDocunent $expected, DOVDocunent $actual[, string
$nessage = ''])

Reportsan error identified by $nmessage if the uncommented canonical form of the XML documents
represented by the two DOM Document objects $expect ed and $act ual are not equal.

Example A.15. Usage of assertEquals() with DOM Document obj ects

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass Equal sTest extends Test Case

{
public function testFailure()
{
$expect ed = new DOVDocunent
$expect ed- >l oadXM_(' <f oo><bar/ ></fo00>");
$actual = new DOVDocunent
$act ual - >l oadXM_(' <bar ><f 0o/ ></ bar >') ;
$t hi s- >assert Equal s($expect ed, $actual)
}
}
?>

phpunit Equal sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Equal sTest::testFailure

Fai |l ed asserting that two DOM docunments are equal
--- Expected

+++ Act ual

@@ @@

<?xm version="1.0"?>

- <f 00>

- <bar/>

104

Assertions

-</foo>
+<bar >

+ <fool>
+</ bar >

/ home/ sb/ Equal sTest . php: 12

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assert Equal s(obj ect $expected, object $actual[, string $nessage =

1)

Reportsan error identified by $Smressage if thetwo objects $expect ed and $act ual do not have
equal attribute values.

Example A.16. Usage of assertEquals() with objects

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass Equal sTest extends Test Case
{
public function testFailure()
{
$expect ed = new st dC ass
$expect ed->foo = 'foo';
$expect ed- >bar "bar';

$actual = new stdd ass
$act ual - >f oo ' bar'
$act ual - >baz "bar';

$t hi s- >assert Equal s($expect ed, $actual)

}

?>

phpuni t Equal sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Equal sTest::testFailure

Fai |l ed asserting that two objects are equal.
--- Expected

+++ Actua

@@ @@

stdC ass Object (

- 'foo' => 'foo

> "bar' => 'bar'

¥ ‘foo' => 'bar'

¥ 'baz' => 'bar’

/ hone/ sb/ Equal sTest . php: 14

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

105

Assertions

assert Equal s(array $expected, array $actual [, string $nmessage = ''])
Reportsan error identified by $nessage if thetwo arrays$expect ed and $act ual arenot equal.
Example A.17. Usage of assertEquals() with arrays

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Equal sTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Equal s(['a', 'b', 'c'], ['a", 'c¢', 'd])
}
}
?>

phpunit Equal sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Equal sTest::testFailure
Fai |l ed asserting that two arrays are equal

--- Expected
+++ Act ual
@ @@
Array (

0 =>"a
- 1 =>"'Db'
- 2 =>"¢'
+ 1 =>"'¢'
+ 2 =>'d'
)

/ home/ sb/ Equal sTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertFalse()

assert Fal se(bool $condition[, string $nessage = ''])
Reports an error identified by $message if $condi ti onistr ue.

assert Not Fal se() istheinverse of this assertion and takes the same arguments.
Example A.18. Usage of assertFalse()

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass Fal seTest extends Test Case

{

public function testFailure()

{

106

Assertions

$t hi s- >assert Fal se(true);

}

?>

phpuni t Fal seTest
PHPUNit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Fal seTest::testFailure
Fai |l ed asserting that true is fal se.

/ hone/ sb/ Fal seTest . php: 6

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertFileEquals|()

assertFil eEqual s(string $expected, string $actual[, string $nessage

=)

Reportsan error identified by $message if thefile specified by $expect ed doesnot have the same
contents as the file specified by $act ual .

assert Fi | eNot Equal s() istheinverse of this assertion and takes the same arguments.
Example A.19. Usage of assertFileEquals()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Fil eEqual sTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Fi | eEqual s(' / hone/ sb/ expected', '/honme/sb/actual');
}
}
?>

phpunit Fil eEqual sTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Fil eEqual sTest::testFailure

Fai |l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@@ @@

-' expect ed

+' actua

107

Assertions

/ home/ sb/ Fi | eEqual sTest . php: 6

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assertFileExists()

assertFil eExi sts(string $filenane[, string $nmessage = ''])
Reports an error identified by $nessage if the file specified by $f i | ename does not exist.

assert Fi | eNot Exi st s() istheinverse of this assertion and takes the same arguments.

Example A.20. Usage of assertFileExists()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Fil eExi stsTest extends Test Case

{
public function testFailure()
{
$t hi s- >assertFi |l eExi sts('/path/to/file');
}
}
?>

phpuni t Fil eExi st sTest
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) FileExistsTest::testFailure
Fail ed asserting that file "/path/to/file" exists.

/ hone/ sb/ Fi | eExi st sTest. php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertGreaterThan()

assert G eat er Than(m xed $expected, mi xed $actual[, string $nessage

="'1)

Reports an error identified by $nessage if the value of $act ual is not greater than the value of
$expect ed.

assert Attri but eGreat er Than() isaconveniencewrapper that usesapubl i c, pr ot ect -
ed, or pri vat e attribute of aclass or object as the actual value.

Example A.21. Usage of assertGreater Than()

<?php

108

Assertions

use PHPUni t\ Fr anewor k\ Test Case;

cl ass GreaterThanTest extends Test Case

{
public function testFail ure()
{
$t hi s- >assert Greater Than(2, 1);
}
}
?>

phpunit G eaterThanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) GeaterThanTest::testFailure
Fai l ed asserting that 1 is greater than 2.

/ home/ sb/ G- eat er ThanTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertGreaterThanOrEqual()

assert G eat er ThanOr Equal (m xed $expected, mixed $actual[, string
$nessage = ''])

Reports an error identified by $nessage if the value of $act ual is not greater than or equal to
the value of $expect ed.

assert Attri but eG eat er ThanOr Equal () is a convenience wrapper that usesa publ i c,
pr ot ect ed, or pri vat e attribute of a class or object as the actual value.

Example A.22. Usage of assertGreater ThanOrEqual()

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass Great ThanOr Equal Test ext ends Test Case

{
public function testFail ure()
{
$t hi s- >assert Great er ThanOr Equal (2, 1);
}
}
?>

phpunit G eater ThanOr Equal Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M

There was 1 failure:

109

Assertions

1) Geat ThanOr Equal Test: :testFailure
Fail ed asserting that 1 is equal to 2 or is greater than 2.

/ home/ sb/ G- eat er ThanOr Equal Test . php: 6

FAI LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertinfinite()

assertInfinite(m xed $variabl e[, string $nessage = ''])
Reports an error identified by $message if $vari abl e isnot | NF.

assertFinite() istheinverse of this assertion and takes the same arguments.

Example A.23. Usage of assertInfinite()

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

class InfiniteTest extends Test Case

{
public function testFailure()
{
$thi s->assertinfinite(l);
}
}
?>

phpunit InfiniteTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) InfiniteTest::testFailure
Fai |l ed asserting that 1 is infinite.

/ home/ sb/ I nfiniteTest. php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertinstanceOf()

assertlnstanceO ($expected, $actual [, $nessage = ''])
Reports an error identified by $message if $act ual isnot aninstance of $expect ed.
assert Not I nst anceOf () istheinverse of this assertion and takes the same arguments.

assertAttributel nstanceO () andassert Attri but eNot | nstanceO () areconve-
nience wrappers that can be applied to apubl i ¢, prot ect ed, or pri vat e attribute of a class
or object.

110

Assertions

Example A.24. Usage of assertlnstanceOf()

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass I nstanceCOf Test extends Test Case

{
public function testFailure()
{
$t hi s- >assert | nstanceO (Runti mneExcepti on: : cl ass, new Excepti on)
}
}
?>

phpunit | nstanceO Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) InstanceO Test::testFailure
Fai |l ed asserting that Exception Ohject (...) is an instance of class "Runti meException".

/ home/ sb/ I nst anceOf Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertinternalType()

assertlnternal Type($expected, $actual[, $nessage = ''])
Reports an error identified by $nmessage if $act ual isnot of the $expect ed type.
assert Not I nt er nal Type() istheinverse of this assertion and takes the same arguments.

assert Attri butel nternal Type() and assert Attri but eNot | nt ernal Type() are
convenience wrappers that can be applied to apubl i c, pr ot ect ed, or pri vat e attribute of a
class or object.

Example A.25. Usage of assertinternal Type()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass Internal TypeTest extends TestCase

{
public function testFailure()
{
$t hi s- >assert | nternal Type('string' , 42);
}
}
?>

phpunit | nternal TypeTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F

111

Assertions

Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Internal TypeTest::testFailure
Fai |l ed asserting that 42 is of type "string".

/ home/ sb/ | nt er nal TypeTest . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertJsonFileEqualsJsonFile()

assertJsonFi | eEqual sJsonFil e(m xed $expectedFile,
File[, string $nessage = ''])

Reports an error identified by $nessage if the value of $act ual Fi | e does not match the value

of $expect edFi | e.
Example A.26. Usage of assertJsonFileEqualsisonFile()

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass JsonFi |l eEqual sJsonFi | eTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert JsonFi | eEqual sJsonFi | e(
"path/to/fixture/file', 'path/to/actual/file');
}
}
?>

phpuni t JsonFi | eEqual sJsonFi | eTest
PHPUnit 5.4.0 by Sebastian Bergnann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonFil eEqual sJsonFile::testFailure

m xed S$act ual -

Fai |l ed asserting that '{"Mascott":"Tux"}' matches JSON string "["Mascott",

/ hone/ sb/ JsonFi | eEqual sJsonFi | eTest. php: 5

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStringEqualsJsonFile()

assertJsonStri ngEqual sJsonFi | e(m xed $expectedFil e,
son[, string $nmessage = ''])

Reports an error identified by $nessage if the value of $act ual Json does not match the value

of $expect edFi | e.

m xed $actual J-

112

"Tux"

Assertions

Example A.27. Usage of assertJsonStringEqualslsonFile()

<?php
use PHPUni t\ Fr anewor k\ Test Case

cl ass JsonStringEqual sJsonFi |l eTest extends Test Case

{
public function testFailure()
{
$t hi s- >assertJsonStri ngEqual sJsonFi | e(
"path/to/fixture/file', json_encode([' Mascott' => "ux'])
)
}
}
?>

phpunit JsonStri ngEqual sJsonFi | eTest
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonStringEqual sJsonFile::testFailure
Fai |l ed asserting that '{"Mascott":"ux"}' matches JSON string "{"Mascott":"Tux"}".

/ hone/ sb/ JsonStri ngEqual sJsonFi | eTest. php: 5

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assertJsonStringEqualsJsonString()

assertJsonStri ngequal sJsonString(m xed $expectedJson, m xed $actu-
al Json[, string $nessage = ''])

Reports an error identified by $nessage if the value of $act ual Json does not match the value
of $expect edJson.

Example A.28. Usage of assertJsonStringEqualsJsonString()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

cl ass JsonStringEqual sJsonStringTest extends Test Case

{
public function testFailure()
{
$t hi s- >assertJsonStri ngEqual sJsonStri ng(
j son_encode([' Mascott' => 'Tux'])
j son_encode([' Mascott' => "ux'])
)i
}
}
?>

phpunit JsonStringEqual sJsonStri ngTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

113

Assertions

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) JsonStringEqual sJsonStringTest::testFailure
Fai |l ed asserting that two objects are equal.
--- Expected

+++ Act ual

@ @@

stdC ass Object (

- 'Mascott' => ' Tux'
+ "Mascott' => 'ux

)

/ home/ sb/ JsonSt ri ngEqual sJsonStri ngTest. php: 5

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assertLessThan()

assertLessThan(m xed $expected, m xed $actual[, string $nessage =

1)

Reports an error identified by $nmessage if the value of $act ual is not less than the value of
$expect ed.

assert Attri but eLessThan() isa convenience wrapper that usesapubl i c, prot ect ed,
or pri vat e attribute of aclass or object as the actual value.

Example A.29. Usage of assertL essThan()

<?php
use PHPUnI t\ Framewor k\ Test Case

cl ass LessThanTest extends Test Case

{
public function testFail ure()
{
$t hi s- >assertLessThan(1, 2);
}
}
?>

phpunit LessThanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) LessThanTest::testFailure
Fai |l ed asserting that 2 is less than 1.

/ home/ sb/ LessThanTest . php: 6

114

Assertions

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertLessThanOrEqual()

assert LessThanOr Equal (m xed $expected, mixed $actual [, string $nes-
sage = '"])

Reports an error identified by $nessage if the value of $act ual is not less than or equal to the
value of $expect ed.

assert Attri but eLessThanOr Equal () isaconveniencewrapper that usesapubl i c, pr o-
t ect ed, or pri vat e attribute of aclass or object as the actual value.

Example A.30. Usage of assertL essThanOrEqual()

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass LessThanOr Equal Test extends Test Case

{
public function testFail ure()
{
$t hi s- >assert LessThanOr Equal (1, 2);
}
}
?>

phpunit LessThanOr Equal Test
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) LessThanOr Equal Test::testFailure
Fail ed asserting that 2 is equal to 1 or is less than 1.

/ hone/ sb/ LessThanOr Equal Test . php: 6

FAl LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertNan()

assert Nan(m xed $vari abl e[, string $nessage = ''])

Reports an error identified by $message if $var i abl e isnot NAN.
Example A.31. Usage of assertNan()

<?php
use PHPUni t\ Fr anewor k\ Test Case

cl ass NanTest extends Test Case

{

public function testFailure()

115

Assertions

$t hi s- >assert Nan(1);

}

?>

phpunit NanTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) NanTest::testFailure
Fail ed asserting that 1 is nan.

/ home/ sb/ NanTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertNull()

assertNul | (m xed $variabl e[, string $nessage = ''])
Reports an error identified by $nessage if $vari abl eisnotnul | .

assert Not Nul | () istheinverse of this assertion and takes the same arguments.

Example A.32. Usage of assertNull()

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

cl ass Nul | Test extends Test Case

{
public function testFailure()
{
$this->assertNull (' foo');
}
}
?>

phpuni t Not Nul | Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Null Test::testFailure
Fail ed asserting that 'foo' is null.

/ hone/ sb/ Not Nul | Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

116

Assertions

assertObjectHasAttribute()

assert Obj ect HasAttribute(string $attributeNane, object $object],
string $nmessage = ''])

Reports an error identified by $message if $obj ect - >at t ri but eNane does not exist.

assert Cbj ect Not HasAt t ri but e() istheinverse of this assertion and takes the same argu-
ments.

Example A.33. Usage of assertObjectHasAttribute()

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass Obj ect HasAttri buteTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Obj ect HasAttri bute(' foo', new stdd ass);
}
}
?>

phpunit Obj ect HasAttri but eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) bj ect HasAttributeTest::testFailure
Fai |l ed asserting that object of class "stdd ass" has attribute "foo".

/ home/ sb/ Obj ect HasAt tri but eTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertRegExp()

assert RegExp(string $pattern, string $string[, string $nessage ="'"'])

Reportsan error identified by $nmessage if $st r i ng does not match the regular expression $pat -
tern.

assert Not RegExp() istheinverse of this assertion and takes the same arguments.
Example A.34. Usage of assertRegExp()

<?php
use PHPUnI t\ Framewor k\ Test Case;

cl ass RegExpTest extends Test Case
{

public function testFailure()

{
$t hi s- >assert RegExp('/foo/', 'bar');

117

Assertions

}

?>

phpunit RegExpTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) RegExpTest::testFailure
Fai l ed asserting that 'bar' natches PCRE pattern "/foo/".

/ hone/ sb/ RegExpTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertStringMatchesFormat()

assert StringMatchesFormat (string $format, string $string[, string
$message = ''])

Reports an error identified by $nmessage if the $st r i ng does not match the $f or nat string.

assert St ri ngNot Mat chesFor mat () istheinverse of this assertion and takes the same argu-
ments.

Example A.35. Usage of assertStringM atchesFormat()

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

cl ass Stringhat chesFor mat Test ext ends Test Case

{
public function testFailure()
{
$t hi s- >assert Stri ngvat chesFormat (' %', 'foo');
}
}
?>

phpunit StringMat chesFor mat Test
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) StringMatchesFormat Test::testFailure
Fail ed asserting that 'foo' matches PCRE pattern "/A[+-]?2\d+$/s".

/ home/ sb/ St ri ngivat chesFor mat Test . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

118

Assertions

The format string may contain the following placeholders:

% Represents a directory separator, for example/ on Linux.

%s: One or more of anything (character or white space) except the end of line character.
%5: Zero or more of anything (character or white space) except the end of line character.
%a: One or more of anything (character or white space) including the end of line character.
%A: Zero or more of anything (character or white space) including the end of line character.
%w. Zero or more white space characters.

% : A signed integer value, for example +3142, - 3142.

%: An unsigned integer value, for example 123456.

% : One or more hexadecimal character. That is, charactersin therange0- 9, a-f , A- F.
% : A floating point number, for example: 3. 142, - 3. 142, 3. 142E- 10, 3. 142e+10.

% : A single character of any sort.

assertStringMatchesFormatFile()

assertStringMatchesFornatFile(string $formatFile, string $string[,
string $nmessage = ''])

Reportsan error identified by $nessage if the$st r i ng does not match the contents of the $f or -
mat Fi | e.

assert St ri ngNot Mat chesFor mat Fi | e() istheinverse of this assertion and takes the same
arguments.

Example A.36. Usage of assertStringM atchesFor matFile()

<?php
use PHPUnI t\ Framewor k\ Test Case;

class StringhatchesFormat Fi |l eTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Stri ngvat chesFormat Fi | e(' / pat h/to/ expected.txt', 'foo');
}
}
?>

phpunit StringMat chesFor mat Fi | eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F

Time: 0 seconds, Menory: 5.00M

There was 1 failure:

1) StringMatchesFormat Fil eTest::testFailure
Fai |l ed asserting that 'foo' matches PCRE pattern "/~[+-]?\d+
$/s".

/ home/ sb/ St ri nghvat chesFor mat Fi | eTest . php: 6

119

Assertions

FAI LURES
Tests: 1, Assertions: 2, Failures: 1.

assertSame()

assert Same(nm xed $expected, mnixed $actual [, string $nmessage = ''])

Reports an error identified by $message if the two variables $expect ed and $act ual do not
have the same type and value.

assert Not Same() istheinverse of this assertion and takes the same arguments.

assertAttri buteSane() and assert Attri but eNot Sane() are convenience wrappers
that useapubl i c, pr ot ect ed, or pri vat e attribute of a class or object as the actual value.

Example A.37. Usage of assertSame()

<?php
use PHPUNI t\ Fr amewor k\ Test Case;

cl ass SaneTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Same(' 2204' , 2204);
}
}
?>

phpuni t SaneTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) SaneTest::testFailure
Fai |l ed asserting that 2204 is identical to '2204'.

/ hone/ sb/ SaneTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

assert Sane(obj ect $expected, object $actual [, string $nmessage = ''])

Reports an error identified by $message if the two variables $expect ed and $act ual do not
reference the same object.

Example A.38. Usage of assertSame() with objects

<?php
use PHPUnI t\ Franmewor k\ Test Case

cl ass SaneTest extends Test Case

{

public function testFailure()

{

120

Assertions

$t hi s- >assert Sane(new stdC ass, new stdd ass);

}

?>

phpunit SaneTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 4.75M
There was 1 failure:

1) SaneTest::testFailure
Fai |l ed asserting that two vari abl es reference the sane object.

/ hone/ sb/ SaneTest . php: 6

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

assertStringEndsWith()

assert StringEndsWth(string $suffix, string $string[, string $nes-
sage = "'])

Reports an error identified by $nessage if the $st r i ng does not end with $suf fi x.

assert StringEndsNot Wt h() istheinverse of this assertion and takes the same arguments.

Example A.39. Usage of assertStringendswWith()

<?php
use PHPUnI t\ Framewor k\ Test Case;

class StringEndsWthTest extends TestCase

{
public function testFailure()
{
$this->assert StringEndsWth('suffix', 'foo');
}
}
?>

phpunit StringEndsWt hTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 1 second, Menory: 5.00M
There was 1 failure:

1) StringEndsWthTest::testFailure
Fai |l ed asserting that 'foo' ends with "suffix".

/ hone/ sb/ Stri ngEndsW t hTest . php: 6

FAI LURES!
Tests: 1, Assertions: 1, Failures: 1.

121

Assertions

assertStringEqualsFile()

assert StringEqual sFil e(string $expectedFile, string $actual String[,
string $nmessage = ''])

Reports an error identified by $nessage if the file specified by $expect edFi | e does not have
$act ual Stri ng asitscontents.

assert St ri ngNot Equal sFi | e() istheinverse of this assertion and takes the same arguments.

Example A.40. Usage of assertStringequalsFile()

<?php
use PHPUNI t\ Fr amewor k\ Test Case

class StringEqual sFil eTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert Stri ngEqual sFi |l e('/ hone/ sb/ expected', 'actual');
}
}
?>

phpunit StringEqual sFi |l eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F

Time: 0 seconds, Menory: 5.25M

There was 1 failure:

1) StringEqual sFileTest::testFailure

Fai l ed asserting that two strings are equal .
--- Expected

+++ Act ual

@@ @@

-' expect ed

+" act ual

/ home/ sb/ St ri ngEqual sFi | eTest . php: 6

FAI LURES
Tests: 1, Assertions: 2, Failures: 1.

assertStringStartsWith()

assertStringStartsWth(string $prefix, string $string[, string $nes-
sage = "'])

Reports an error identified by $nessage if the $st r i ng does not start with $pr ef i x.
assert StringStartsNot Wt h() istheinverse of thisassertion and takes the same arguments.

Example A.41. Usage of assertStringStartswith()

<?php

122

Assertions

use PHPUni t\ Fr anewor k\ Test Case

class StringStartsWthTest extends TestCase

{
public function testFailure()
{
$this->assertStringStartsWth('prefix', 'foo');
}
}
?>

phpunit StringStartsWthTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) StringStartsWthTest::testFailure
Fai |l ed asserting that 'foo' starts with "prefix".

/hone/ sb/ StringStartsWthTest. php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertThat()

M ore complex assertions can beformulated using the PHPUni t _Fr amewor k_Const r ai nt class-
es. They canbeevaluated usingtheasser t That () method. Example A.42, “ Usage of assertThat()”
shows how the | ogi cal Not () and equal To() constraints can be used to express the same as-
sertion asasser t Not Equal s() .

assert That (m xed $val ue, PHPUnit_ Framewor k_Constraint $constraint[,
$nmessage = ''])

Reports an error identified by $nessage if the $val ue does not match the $const r ai nt .
Example A.42. Usage of assertThat()

<?php
use PHPUnI t\ Fr amewor k\ Test Case

cl ass BiscuitTest extends Test Case

{
public function testEquals()
{
$theBi scuit = new Biscuit(' G nger")
$nyBi scuit = new Biscuit(' G nger")
$t hi s- >assert That (
$t heBi scui t
$t hi s- >l ogi cal Not (
$t hi s- >equal To($nyBi scui t)
)
DK
}
}
?>

123

Assertions

Table A.1, “Constraints’ shows the available PHPUni t _Fr amewor k_Const r ai nt classes.

Table A.1. Constraints

Constraint

Meaning

PHPUnit _ Framewor k_ Constraint _
Attribute attribute(PHPUNit
Framewor k_ Constrai nt $con-
straint, $attributeNane)

Congtraint that applies another constraint to an
attribute of a class or an object.

PHPUni t _ Franework_ Constraint _
| sAnyt hi ng anyt hi ng()

Constraint that accepts any input value.

PHPUNnit _ Framework _ Constraint _
ArrayHasKey arrayHasKey(ni xed
$key)

Constraint that asserts that the array it is evaluat-
ed for hasagiven key.

PHPUni t _ Framewor k_ Con-
straint_ Traversabl eCont ai ns
cont ai ns(ni xed $val ue)

Congtraint that asserts that the ar r ay or object
that implementsthel t er at or interfaceit is
evaluated for contains a given value.

PHPUni t _ Framewor k_ Con-
straint_ Traversabl eCont ai nsOnl y
contai nsOnl y(string $type)

Congtraint that asserts that thear r ay or ob-
ject that implementsthel t er at or interface it
is evaluated for contains only values of agiven
type.

PHPUni t _ Franewor k_ Con-
straint_ Traversabl eCont ai nsOnly
cont ai nsOnl yl nst ancesOf (string
$cl assnane)

Congtraint that asserts that the ar r ay or object
that implementsthel t er at or interfaceitis
evaluated for contains only instances of agiven
classname.

PHPUNnit _ Framework _ Constraint _
| sEqual equal To($val ue, $delta
0, $maxDepth = 10)

Constraint that checks if one value is equal to
another.

PHPUni t _ Franmewor k_

Constraint_ Attribute

attri but eEqual To($attri but eNane,
$val ue, $delta = 0, $maxDepth =
10)

Congtraint that checks if avalueisequal to an
attribute of a class or of an object.

PHPUnit _ Framewor k_ Constraint _
FileExists fileExists()

Congtraint that checks if the file(name) that it is
evaluated for exists.

PHPUni t _ Franework_ Constraint _
G eat er Than great er Than(m xed
$val ue)

Constraint that asserts that the value it is eval uat-
ed for is greater than a given value.

PHPUNnit _ Framework _ Constraint _
O great er ThanOr Equal (ni xed
$val ue)

Congtraint that asserts that the value it is evaluat-
ed for is greater than or equal to a given value.

PHPUni t _ Framewor k_ Con-
straint_ C assHasAttribute

cl assHasAttri bute(string $at-
tri but eNane)

Constraint that asserts that the classit is evaluat-
ed for has agiven attribute.

PHPUni t _ Framewor k_ Con-
straint_ C assHasStaticAttribute
cl assHasStaticAttribute(string
$attri but eNane)

Constraint that asserts that the classit is evaluat-
ed for has a given static attribute.

PHPUni t _ Franewor k_ Con-
straint_ ObjectHasAttribute
hasAttri bute(string $attribute-
Nane)

Congtraint that asserts that the object it is evalu-
ated for has a given attribute.

124

Assertions

Constraint

Meaning

PHPUNni t _ Framewor k_ Constraint _
I sldentical identical To(ni xed
$val ue)

Constraint that asserts that one value isidentical
to another.

PHPUnit _ Framewor k_ Constraint _
| sFal se isFal se()

Constraint that asserts that the valueit is eval uat-
edisf al se.

PHPUni t _ Franework_ Constraint _
I sl nstance™ islnstanceX (string
$cl assNane)

Congtraint that asserts that the object it is evalu-
ated for is an instance of a given class.

PHPUNni t _ Framewor k_ Constraint _
IsNul I isNull()

Constraint that asserts that the value it is eval uat-
edisnul | .

PHPUNni t _ Framewor k_ Constraint _
I sTrue isTrue()

Constraint that asserts that the value it is evaluat-
edistrue.

PHPUnit _ Framewor k_ Constraint _
| sType isType(string $type)

Constraint that asserts that the valueit is eval uat-
ed for is of aspecified type.

PHPUni t _ Franework_ Constraint _
LessThan | essThan(m xed $val ue)

Constraint that asserts that the valueit is eval uat-
ed for is smaller than agiven value.

PHPUNni t _ Framewor k_ Constraint _
O | essThanOr Equal (mi xed $val ue)

Congtraint that asserts that the value it is evaluat-
ed for is smaller than or equal to agiven value.

| ogi cal And() Logical AND.
| ogi cal Not (PHPUNni t _ Framewor k_ Logical NOT.
Constraint $constraint)

| ogi cal O () Logical OR.

| ogi cal Xor () Logical XOR.

PHPUNi t _ Framewor k_

Constrai nt _ PCREMat ch

mat chesRegul ar Expr essi on(string
$pattern)

Constraint that asserts that the string it is evalu-
ated for matches aregular expression.

PHPUni t _ Framewor k_ Con-
straint_ StringContains
stringContains(string $string,
bool $case)

Congtraint that asserts that the string it is evalu-
ated for contains a given string.

PHPUni t _ Franewor k_ Con-
straint_ StringEndsWth
stringEndsWth(string $suffix)

Congtraint that asserts that the string it is evalu-
ated for ends with a given suffix.

PHPUNni t _ Framewor k_ Con-
straint_ StringStartsWth
stringStartsWth(string $prefix)

Congtraint that asserts that the string it is evalu-
ated for starts with a given prefix.

assertTrue()

assert True(bool $condition[,

string $message

1)

Reports an error identified by $message if $condi ti onisf al se.

assert Not Tr ue() istheinverse of this assertion and takes the same arguments.

Example A.43. Usage of assertTrue()

<?php
use PHPUnI t\ Framewor k\ Test Case;

125

Assertions

cl ass TrueTest extends Test Case

{
public function testFailure()
{
$t hi s- >assert True(fal se);
}
}
?>

phpunit TrueTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) TrueTest::testFailure
Fai |l ed asserting that false is true.

/ hone/ sb/ TrueTest . php: 6

FAI LURES
Tests: 1, Assertions: 1, Failures: 1.

assertXmlFileEqualsXmlFile()

assert Xm Fi | eEqual sXm Fi |l e(string $expectedFile, string $actual-
File[, string $nessage = ''])

Reports an error identified by $message if the XML document in $act ual Fi | e is not equal to
the XML document in $expect edFi | e.

assert Xm Fi | eNot Equal sXm Fi | e() istheinverse of this assertion and takes the same ar-
guments.

Example A.44. Usage of assertXmlFileEqualsXmlFileg()

<?php
use PHPUnI t\ Framewor k\ Test Case

class Xm Fi | eEqual sXm Fi | eTest extends Test Case

{

public function testFailure()

{

$t hi s- >assert Xm Fi | eEqual sXm Fi | e(
'/ hone/ sb/ expected. xm ', '/hone/sb/actual .xm");

}
}
?>

phpunit Xm Fi | eEqual sXm Fi | eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M

There was 1 failure:

126

Assertions

1) Xm Fil eEqual sXm Fi | eTest::testFailure

Fai |l ed asserting that two DOM docunents are equal
--- Expected

+++ Act ual

@ @@
<?xm version="1.0"7?>
<f 00>

- <bar/>

+ <baz/>
</ foo>

/ home/ sb/ Xm Fi | eEqual sXm Fi | eTest . php: 7

FAI LURES
Tests: 1, Assertions: 3, Failures: 1.

assertXmiStringEqualsXmlFile()

assert Xm StringEqual sXm Fil e(string $expectedFile, string $actu-
al Xm [, string $nessage = ''])

Reports an error identified by $message if the XML document in $act ual Xm isnot equal to the
XML document in $expect edFi | e.

assert Xnm St ri ngNot Equal sXm Fi | e() istheinverse of this assertion and takes the same
arguments.

Example A.45. Usage of assertXmlStringEqualsXmlFile()

<?php
use PHPUnI t\ Framewor k\ Test Case

class Xm StringEqual sXm Fi | eTest extends Test Case

{

public function testFailure()

{

$t hi s- >assert Xm Stri ngEqual sXm Fi | e(
'/ hone/ sb/ expected. xm ', ' <foo><baz/></fo0>")

}
}
?>

phpunit Xm StringEqual sXm Fi | eTest
PHPUnit 5.4.0 by Sebastian Bergmann and contri butors.

F
Time: 0 seconds, Menory: 5.25M
There was 1 failure:

1) Xm StringEqual sXm Fil eTest: :testFailure
Fai |l ed asserting that two DOM docunents are equal
--- Expected

+++ Actua

@@ @@

<?xm version="1.0"?>

<f 0oo>

- <bar/>

+ <baz/>

</ foo>

127

Assertions

/ home/ sb/ Xm St ri ngEqual sXm Fi | eTest. php: 7

FAI LURES!
Tests: 1, Assertions: 2, Failures: 1.

assertXmlStringEqualsXmlString()

assert Xm StringEqual sXm String(string $expectedXm , string $actu-
al Xm [, string $nessage = ''])

Reports an error identified by $nmessage if the XML document in $act ual Xm isnot equal to the
XML document in $expect edXm .

assert Xnl St ri ngNot Equal sXm St ri ng() istheinverseof thisassertion and takesthe same
arguments.

Example A.46. Usage of assertXmlStringequalsXmlString()

<?php
use PHPUnI t\ Framewor k\ Test Case;

class Xm StringEqual sXm StringTest extends Test Case

{

public function testFail ure()

{

$t hi s->assert Xm Stri ngEqual sXm Stri ng(
' <f oo><bar/></foo>", '<foo><baz/></fo0>");

}
}
?>

phpunit Xm StringEqual sXm StringTest
PHPUnit 5.4.0 by Sebastian Bergnmann and contri butors.

F
Time: 0 seconds, Menory: 5.00M
There was 1 failure:

1) Xm StringEqual sXm StringTest::testFailure
Fai |l ed asserting that two DOM docunents are equal .
--- Expected
+++ Act ual
@@ @@
<?xm version="1.0"?>
<f 00>
- <bar/>
+ <baz/>
</ foo>

/ honme/ sb/ Xm St ri ngEqual sXm StringTest. php: 7

FAl LURES!
Tests: 1, Assertions: 1, Failures: 1.

128

Appendix B. Annotations

An annotation is a specia form of syntactic metadata that can be added to the source code of some
programming languages. While PHP has no dedicated language feature for annotating source code,
the usage of tagssuch as @nnot at i on ar gunent s in documentation block has been established
in the PHP community to annotate source code. In PHP documentation blocks are reflective: they
can be accessed through the Reflection API's get Doc Comrent () method on the function, class,
method, and attribute level. Applications such as PHPUnit use thisinformation at runtimeto configure
their behaviour.

Note

A doc comment in PHP must start with/ ** and end with* / . Annotationsin any other style
of comment will be ignored.

This appendix shows all the varieties of annotations supported by PHPUnit.

@author

The @ut hor annotation is an alias for the @r oup annotation (see the section called “ @group”)
and allowsto filter tests based on their authors.

@after

The @f t er annotation can be used to specify methods that should be called after each test method
in atest case class.

use PHPUnI t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @fter
*/
public function tear DownSomeFi xt ures()
{
I
}
/**
* @fter
*/
public function tear DowmnSomeQt her Fi xt ures()
{
I
}
}

@afterClass

The @f t er O ass annotation can be used to specify static methods that should be called after al
test methods in atest class have been run to clean up shared fixtures.

use PHPUNi t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{

129

Annotations

/**
* @fterd ass
>/
public static function tear DownSoneShar edFi xt ures()

{
}

/**

* @fterd ass
>/
public static function tear DownSonmeQ her Shar edFi xt ures()

{
}

/1

/1

@backupGlobals

The backup and restore operations for global variables can be completely disabled for all tests of a
test case class like this

use PHPUni t\ Fr anewor k\ Test Case;

/**
* @ackupd obal s di sabl ed
*/
cl ass MyTest extends Test Case
{
/1
}

The @ackup@@ obal s annotation can also be used on the test method level. Thisalowsfor afine-
grained configuration of the backup and restore operations:

use PHPUnI t\ Fr amewor k\ Test Case;

/**
* @ackupd obal s di sabl ed
*/
cl ass MyTest extends Test Case
{
/**
* @ackupd obal s enabl ed
*/
public function testThatlnteractsWthd obal Vari abl es()
{

}

I

@backupStaticAttributes

The @ackupSt ati cAttri but es annotation can be used to back up all static property values
in all declared classes before each test and restore them afterwards. It may be used at the test case
class or test method level:

use PHPUNi t\ Fr amewor k\ Test Case;

/**

130

Annotations

* @ackupStaticAttri butes enabl ed

*
/
cl ass MyTest extends Test Case
{
/**
* @ackupStaticAttributes disabled
*
/
public function testThatlnteractsWthStaticAttributes()
{
I
}
}
Note

@ackupSt ati cAttri butes islimited by PHP internals and may cause unintended
static values to persist and leak into subsequent tests in some circumstances.

See the section called “Global State” for details.

@before

The @ef or e annotation can be used to specify methodsthat should be called before each test method
in atest case class.

use PHPUnI t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{

/**
* @efore
*/
public function setupSoneFi xt ures()

{
}

/**
* @efore
*/
public function setupSomeQ her Fi xt ures()

{
}

I

I

@beforeClass

The @ef or ed ass annotation can be used to specify static methods that should be called before
any test methods in atest class are run to set up shared fixtures.

use PHPUNni t\ Fr anmewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @efored ass
*/
public static function setUpSoneShar edFi xtures()
{

131

Annotations

/1
}

/**
* @bef ored ass
>/
public static function setUpSoneQ her Shar edFi xt ures()

{
}

/1

@codeCoveragelgnore*

The @odeCover agel gnor e, @odeCover agel gnoreSt art and @odeCover agel g-
nor eEnd annotations can be used to exclude lines of code from the coverage analysis.

For usage see the section called “Ignoring Code Blocks'.

@covers

The @over s annotation can be used in the test code to specify which method(s) a test method
wantsto test:

/**

* @overs BankAccount: : get Bal ance

>/
public function testBal ancelslnitiallyZero()
{
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}

If provided, only the code coverage information for the specified method(s) will be considered.

Table B.1, “Annotations for specifying which methods are covered by atest” shows the syntax of the
@over s annotation.

Table B.1. Annotationsfor specifying which methods are covered by atest

Annotation Description

@overs C assNane: : met hodName Speci fies that the annotated
test method covers the specified
met hod.

@overs Cl assNane Specifies that the annotated

test nmethod covers all nethods
of a given cl ass.

@overs C assNane<ext ended> Speci fies that the annotated
test nethod covers all nethods
of a given class and its parent
class(es) and interface(s).

@overs d assNane: : <public> Specifies that the annotated
test nethod covers all public
met hods of a given cl ass.

@overs Cl assNane: : <protected> Speci fies that the annotated
test method covers all protected
met hods of a given cl ass.

132

Annotations

Annotation Description

@overs ClassNane:: <privat e> Speci fies that the annotated
test nmethod covers all private
met hods of a given cl ass.

@overs C assNane: : <! public> Speci fies that the annotated
test nethod covers all nethods
of a given class that are not
publi c.

@overs ClassNane:: <!protected> |[Specifies that the annotated
test nethod covers all methods
of a given class that are not
pr ot ect ed.

@overs ClassNane:: <!private> Speci fies that the annotated
test nmethod covers all nethods
of a given class that are not
private.

@overs ::functionNanme Speci fies that the annotated
test method covers the specified
gl obal functi on.

@coversDefaultClass

The@over sDef aul t C ass annotation can be used to specify adefault namespace or class name.
That way long names don't need to be repeated for every @ over s annotation. See Example B.1,
“Using @coversDefaultClass to shorten annotations’.

Example B.1. Using @cover sDefaultClass to shorten annotations

<?php
use PHPUnI t\ Fr amewor k\ Test Case;

cl ass CoversDefaul t Cl assTest extends Test Case

{
public function testSonething()
{
$0 = new Foo\ Cover edd ass;
$0- >publ i cMet hod() ;
}
}
?>

@coversNothing

The @over sNot hi ng annotation can be used in the test code to specify that no code coverage
information will be recorded for the annotated test case.

Thiscan be used for integration testing. See Example 11.3, “ A test that specifiesthat no method should
be covered” for an example.

The annotation can be used on the class and the method level and will override any @ over s tags.

133

Annotations

@dataProvider

A test method can accept arbitrary arguments. These arguments are to be provided by a data provider
method (pr ovi der () in Example 2.5, “Using a data provider that returns an array of arrays’). The
data provider method to be used is specified using the @lat aPr ovi der annotation.

See the section caled “Data Providers’ for more details.

@depends

PHPUnNIt supports the declaration of explicit dependencies between test methods. Such dependencies
do not define the order in which the test methods are to be executed but they allow the returning of
an instance of the test fixture by a producer and passing it to the dependent consumers. Example 2.2,
“Using the @epends annotation to express dependencies’ shows how to use the @ epends anno-
tation to express dependencies between test methods.

See the section called “ Test Dependencies’ for more details.

@expectedException

Example 2.10, “Using the expectException() method” shows how to use the @xpect edExcep-
t i on annotation to test whether an exception is thrown inside the tested code.

See the section called “ Testing Exceptions’ for more details.

@expectedExceptionCode

The @xpect edExcept i onCode annotation, in conjunction with the @xpect edExcepti on
allows making assertions on the error code of a thrown exception thus being able to narrow down a
specific exception.

use PHPUni t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @xpect edException M/Excepti on
* @xpect edExcepti onCode 20
*
/
public function testExcepti onHasErrorcode20()
{
t hrow new MyException(' Some Message', 20);
}
}

To ease testing and reduce duplication a shortcut can be used to specify a class constant as an @x-
pect edExcepti onCode using the "@xpect edExcepti onCode C assNane: : CONST"
syntax.

use PHPUni t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{

/**
* @xpect edExcepti on M/Excepti on
* @xpect edExcepti onCode MyCd ass: : ERRORCODE
*/
public function testExcepti onHasErrorcode20()
{

134

Annotations

t hrow new MyException(' Sone Message', 20);

}
class Myd ass
{

const ERRORCODE = 20;
}

@expectedExceptionMessage

The @xpect edExcept i onMessage annotation works similar to @xpect edExcepti on-
Code asit lets you make an assertion on the error message of an exception.

use PHPUni t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @xpect edException MyExcepti on
* @xpect edExcepti onMessage Sone Message
>/
public function testExcepti onHasRi ght Message()
{
t hr ow new MyException(' Sone Message', 20);
}
}

The expected message can be a substring of the exception Message. This can be useful to only assert
that acertain name or parameter that was passed in shows up in the exception and not fixate the whole
exception message in the test.

use PHPUnI t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @xpect edExcepti on M/Excepti on
* @xpect edExcepti onMessage broken
*/
public function testExcepti onHasRi ght Message()
{
$param = "br oken";
throw new MyException('Invalid paraneter "'.$param'".', 20);
}
}

To ease testing and reduce duplication a shortcut can be used to specify a class con-
stant as an @xpect edExcepti onMessage using the "@xpect edExcepti onMessage
Cl assNane: : CONST" syntax. A sample can be found in the section called “ @expectedException-
Code”.

@expectedExceptionMessageRegEXp

The expected message can a so be specified as aregular expression using the @xpect edExcep-
t i onMessageRegExp annotation. Thisis helpful for situations where a substring is not adequate
for matching a given message.

use PHPUNi t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{

135

Annotations

/**
* @xpect edExcepti on M/Excepti on
* @xpect edExcepti onMessageRegExp / Argunent \d+ can not be an? \w+/
*/

public function testExcepti onHasRi ght Message()

{

}

throw new MyException(' Argunent 2 can not be an integer');

}

@group

A test can be tagged as belonging to one or more groups using the @r oup annotation like this
use PHPUNI t\ Fr anewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @roup specification
>/
public function testSomething()
{
}
/**
* @roup regresssion
* @roup bug2204
>/
public function testSonethi ngEl se()
{
}
}

Tests can be selected for execution based on groups using the - - gr oup and - - excl ude- gr oup
options of the command-line test runner or using the respective directives of the XML configuration
file.

@large

The @ ar ge annotationisan aliasfor @r oup | ar ge.

If the PHP_I nvoker packageisinstalled and strict modeis enabled, alarge test will fail if it takes
longer than 60 seconds to execute. Thistimeout is configurableviathet i meout For Lar geTest s
attribute in the XML configuration file.

@medium

The @redi umannotation is an alias for @r oup mnedi um A medium test must not depend on a
test marked as @ ar ge.

If thePHP_I nvoker packageisinstalled and strict modeisenabled, amedium test will fail if it takes
longer than 10 secondsto execute. Thistimeout isconfigurableviathet i meout For Medi unirest s
attribute in the XML configuration file.

@preserveGlobalState

When atest is run in a separate process, PHPUnit will attempt to preserve the global state from
the parent process by serializing all globals in the parent process and unserializing them in the child

136

Annotations

process. This can cause problems if the parent process contains globals that are not serializable. To
fix this, you can prevent PHPUnit from preserving global statewiththe @r eser ved obal St at e
annotation.

use PHPUNi t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{
/**
* @unl nSepar at ePr ocess
* @reserved obal State disabl ed
*
/
public function testlnSeparateProcess()
{
/1
}
}

@requires

The @ equi r es annotation can be used skip tests when common preconditions, like the PHP Ver-
sion or installed extensions, are not met.

A completelist of possibilities and examples can be found at Table 7.3, “ Possible @requires usages’

@runTestsInSeparateProcesses

Indicates that all testsin atest class should be run in a separate PHP process.

use PHPUnI t\ Fr amewor k\ Test Case;

/**

* @unTest sl nSepar at ePr ocesses
*/

cl ass MyTest extends Test Case

{
}

I

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing al globals in the parent process and unserializing them in the child process. This can cause
problemsif the parent process contains global sthat are not serializable. Seethe section called “ @pre-
serveGlobal State” for information on how to fix this.

@runinSeparateProcess

Indicates that atest should be run in a separate PHP process.

use PHPUNi t\ Fr amewor k\ Test Case;

cl ass MyTest extends Test Case

{

/**

* @ unl nSepar at ePr ocess

2/
public function testlnSeparateProcess()
{

/1

}

137

Annotations

}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by seri-
alizing al globals in the parent process and unserializing them in the child process. This can cause
problemsif the parent process contains global sthat are not serializable. Seethe section called “ @pre-
serveGlobal State” for information on how to fix this.

@small

The @nal | annotation is an alias for @r oup smal | . A small test must not depend on a test
marked as @redi umor @ ar ge.

If the PHP_I nvoker packageisinstalled and strict modeis enabled, asmall test will fail if it takes

longer than 1 second to execute. This timeout is configurable viathet i meout For Snal | Test s
attribute in the XML configuration file.

Note

Tests need to be explicitly annotated by either @ nal | , @redi um or @ ar ge to enable
run time limits.

@test

Asan alternative to prefixing your test method nameswitht est , you can usethe @ est annotation
in amethod's DocBlock to mark it as atest method.

/**
* @ est
>/
public function initial Bal anceShoul dBe0O()
{
$t hi s- >assert Equal s(0, $thi s->ba->getBal ance());
}

@testdox

@ticket

@uses

The @ises annotation specifies code which will be executed by a test, but is not intended to be
covered by thetest. A good exampleis avalue object which is necessary for testing a unit of code.

/**

* @overs BankAccount: : deposit

* @ses Mboney

*/
public function testMoneyCanBeDepositedl nAccount ()
{

138

Annotations

/1
}

This annotation is especially useful in strict coverage mode where unintentionally covered code will
cause atest to fail. See the section called “Unintentionally Covered Code” for more information re-
garding strict coverage mode.

139

Appendix C. The XML Configuration
File
PHPUnit

The attributes of the <phpuni t > element can be used to configure PHPUnit's core functionality.

<phpuni t
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmaLocat i on="htt p: //schema. phpuni t. de/ 4. 5/ phpuni t. xsd"
backupd obal s="true"
backupStati cAttri butes="fal se"
<! --boot strap="/pat h/to/ boot strap. php"-->
cacheTokens="f al se"
col ors="f al se"
convert Error sToExcepti ons="true"
convert Noti cesToExcepti ons="true"
convert War ni ngsToExcepti ons="true"
forceCover sAnnot ati on="f al se"
mapTest Cl assNaneToCover edCl assNane="f al se"
printerC ass="PHPUnit_Text U _ResultPrinter”
<I--printerFile="/path/to/ResultPrinter.php"-->
processl sol ati on="f al se"
st opOnError ="fal se"
st opOnFai | ure="f al se"
st opOnl nconpl et e="f al se"
st opOnSki pped="f al se"
st opOnRi sky="f al se"
t est Sui t eLoader C ass="PHPUni t _Runner St andar dTest Sui t eLoader"
<I--testSuitelLoaderFil e="/path/to/StandardTest Sui t eLoader . php"-->
ti meout For Smal | Test s="1"
ti meout For Medi uniTest s="10"
ti meout For Lar geTest s="60"
ver bose="f al se">

<l-- ... -->
</ phpuni t >

The XML configuration above corresponds to the default behaviour of the TextUI test runner docu-
mented in the section called “ Command-Line Options”.

Additional optionsthat are not available as command-line options are:

convert Error sToExcep- By default, PHPUnit will install an error handler that converts
tions the following errors to exceptions:

« E_WARNI NG

* E_NOTI CE

+ E_USER_ERRCR

E_USER_ WARNI NG

« E_USER_NOTI CE

E_STRI CT

E_RECOVERABLE_ERRCR

140

The XML Configuration File

« E_DEPRECATED
« E_USER_DEPRECATED

Setconvert ErrorsToExcepti ons tof al se todisable

this feature.
convert Noti cesToExcep- When set to f al se, the error handler installed by con-
tions vert Error sToExcepti ons will not convert E_NOTI CE,

E _USER NOTI CE, or E_STRI CT errorsto exceptions.

convert War ni ngsToExcep- When settof al se, theerror handler installed by convert -
tions Er r or sToExcept i ons will not convert E_ WARNI NG or
E_USER_WARNI NGerrorsto exceptions.

f or ceCover sAnnot ati on Code Coverage will only be recorded for tests that use the
@over s annotation documented inthe section called “ @cov-
ers’.

ti meout For Lar geTest s If time limits based on test size are enforced then this attribute

sets the timeout for all tests marked as @ ar ge. If atest does
not complete within its configured timeout, it will fail.

ti meout For Medi unest s If time limits based on test size are enforced then this attribute
setsthetimeout for all tests marked as @redi um If atest does
not complete within its configured timeout, it will fail.

ti meout For Smal | Test s If time limits based on test size are enforced then this at-
tribute sets the timeout for all tests not marked as @redi um
or @ ar ge. If atest does not complete within its configured
timeout, it will fail.

Test Suites

The<t est sui t es> element and itsone or more<t est sui t e> children can be used to compose
atest suite out of test suites and test cases.

<testsuites>
<testsuite nane="My Test Suite">
<directory>/path/to/*Test.php files</directory>
<file>/path/to/ MyTest.php</file>
<excl ude>/ pat h/ t o/ excl ude</ excl ude>
</testsuite>
</testsuites>

Using the phpVer si on and phpVer si onQper at or attributes, a required PHP version can be
specified. The example below will only add the / pat h/ t o/ * Test . php filesand / pat h/ t o/
MyTest . php fileif the PHP versionis at least 5.3.0.

<testsuites>
<testsuite nane="M/ Test Suite">
<directory suffix="Test.php" phpVersion="5.3.0" phpVersionQOperator=">=">/path/tol/f
<fil e phpVersion="5.3.0" phpVersi onOperator=">=">/path/to/ MyTest. php</file>
</testsuite>
</testsuites>

ThephpVer si onOper at or attribute is optional and defaultsto >=.

141

The XML Configuration File

Groups

The <gr oups> element and its <i ncl ude>, <excl ude>, and <gr oup> children can be used
to select groups of tests marked with the @r oup annotation (documented in the section called
“@group”) that should (not) be run.

<gr oups>
<i ncl ude>
<gr oup>name</ gr oup>
</incl ude>
<excl ude>
<gr oup>name</ gr oup>
</ excl ude>
</ groups>

The XML configuration above corresponds to invoking the TextUI test runner with the following
options:

e --group nane

* --excl ude-group nane

Whitelisting Files for Code Coverage

The<fi | t er > element and its children can be used to configure the whitelist for the code coverage
reporting.

<filter>
<whi teli st processUncoveredFil esFromAitelist="true">
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
<excl ude>
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
</ excl ude>
</whitelist>
</filter>

Logging

The <l oggi ng> element and its <I og> children can be used to configure the logging of the test
execution.

<l oggi ng>
<l og type="coverage-htm " target="/tnp/report" | owdpper Bound="35"
hi ghLower Bound="70"/ >
<l og type="coverage-clover" target="/tnp/coverage. xm"/>
<l og type="coverage-php" target="/tnp/coverage.serialized"/>
<l og type="coverage-text" target="php://stdout" showUncoveredFil es="fal se"/>
<l og type="json" target="/tnp/logfile.json"/>
<l og type="tap" target="/tnp/logfile.tap"/>
<log type="junit" target="/tnp/logfile.xm" |oglnconpl eteSki pped="fal se"/>
<l og type="testdox-htm" target="/tnp/testdox.htm"/>
<l og type="testdox-text" target="/tnp/testdox.txt"/>
</'l oggi ng>

The XML configuration above corresponds to invoking the TextUI test runner with the following
options:

142

The XML Configuration File

Test

e --coverage-htm /tnp/report

e --coverage-cl over /tnp/coverage. xm

e --coverage-php /tnp/ coverage. serialized
e --coverage-text

e --log-json /tnp/logfile.json

> [tnp/logfile.txt

e --log-tap /tnp/logfile.tap

e --log-junit /tnp/logfile. xm

o --testdox-htm /tnp/testdox. htm
 --testdox-text /tnp/testdox.txt

The | owUpper Bound, hi ghLower Bound, | ogl nconpl et eSki pped and showUncov-
er edFi | es attributes have no equivalent TextUI test runner option.

* | owUpper Bound: Maximum coverage percentage to be considered "lowly" covered.
» hi ghLower Bound: Minimum coverage percentage to be considered "highly" covered.

» showUncover edFi | es: Show all whitelisted filesin - - cover age- t ext output not just the
ones with coverage information.

e showOnl ySummar y: Show only the summary in - - cover age- t ext output.

Listeners

The <l i st ener s> element and its<| i st ener > children can be used to attach additional test
listeners to the test execution.

<listeners>
<listener class="MyListener" file="/optional/path/to/M/Listener.php">
<ar gunent s>
<array>
<el ement key="0">
<string>Sebasti an</string>
</ el enent >
</ array>
<i nt eger >22</ i nt eger >
<string>April </string>
<doubl e>19. 78</ doubl e>
<nul I />
<obj ect cl ass="stdd ass"/>
</ ar gunent s>
</listener>
</listeners>

The XML configuration above corresponds to attaching the $1 i st ener object (see below) to the
test execution:

$l i stener = new MyLi st ener (
[' Sebastian'],
22,
"April',
19. 78,

143

The XML Configuration File

nul I,
new st dd ass

DE

Setting PHP INI settings, Constants and
Global Variables

The <php> element and its children can be used to configure PHP settings, constants, and global
variables. It can also be used to prepend thei ncl ude_pat h.

<php>
<i ncl udePat h>. </ i ncl udePat h>
<ini nane="foo" val ue="bar"/>
<const nane="foo" val ue="bar"/>
<var nane="foo" val ue="bar"/>
<env nane="foo" val ue="bar"/>
<post nanme="foo" val ue="bar"/>
<get name="foo" val ue="bar"/>
<cooki e nane="foo0" val ue="bar"/>
<server nane="foo" val ue="bar"/>
<files name="foo" val ue="bar"/>
<request nane="foo" val ue="bar"/>

</ php>

The XML configuration above corresponds to the following PHP code:

ini_set('foo', 'bar');
define('foo', 'bar');
$GLOBALS[' foo'] = 'bar';
$_ENV['fo0'] = 'bar';

$ POST['fo0'] = 'bar';

$ GET['fo0'] = 'bar';

$ COXKIE['foo'] = 'bar';
$ SERVER['fo0'] = 'bar';
$ FILES['foo'] = 'bar';

$ REQUEST['foo'] = 'bar';

Configuring Browsers for Selenium RC

The<sel eni unme element and its<br owser > children can be used to configure alist of Selenium
RC servers.

<sel eni unm
<browser nane="Firefox on Linux"
browser="*firefox /usr/lib/firefox/firefox-bin"
host ="ny. | i nux. box"
port ="4444"
ti meout =" 30000"/ >
</ sel eni une

The XML configuration above corresponds to the following PHP code:

cl ass WebTest extends PHPUnit_Ext ensi ons_Sel eni uniTest Case

{
public static $browsers = |
[
' nang' => 'Firefox on Linux',
"browser' => "*firefox /usr/lib/firefox/firefox-bin',
" host"' => '"my. | inux. box',

144

The XML Configuration File

/1

" port’
"tinmeout'

=> 4444,
=> 30000

145

Appendix D. Index

Index

Symbols
$backupGlobalsBlacklist, 31
$backupStaticAttributesBlacklist, 31
@author, , 129
@backupGlobals, 31, 130, 130
@backupStaticAttributes, 31, 130
@codeCoveragelgnore, 78, 132
@codeCoveragel gnoreEnd, 78, 132
@codeCoveragel gnoreStart, 78, 132
@covers, 79, 132
@coversDefaultClass, 133
@coversNothing, 80, 133
@dataProvider, 8, 11, 12, 12, 134
@depends, 6, 6,11, 12, 12, 134
@expectedException, 13, 134
@expectedExceptionCode, 134
@expectedExceptionMessage, 135
@expectedExceptionM essageRegEXp, 135
@group, , , , 136
@large, 136
@medium, 136
@preserveGlobal State, 136
@requires, 137, 137
@runinSeparateProcess, 137
@runT estsl nSeparateProcesses, 137
@small, 138
@test, 5, 138
@testdox, 138
@ticket, 138
@uses, 138

A

Agile Documentation, , , 82
Annotation, 5, 6, 6, 8, 11, 12, 12, 13, , ,
anything(),

arrayHasKey(),

assertArrayHasK ey(), 93
assertArrayNotHasK ey(), 93
assertArraySubset(), 94, 94
assertAttributeContains(), 95
assertAttributeContainsOnly(), 97
assertAttributeEmpty/(), 99
assertAttributeEqual s(), 102
assertAttributeGreaterThan(), 108
assertAttributeGreaterThanOrEqual (), 109
assertAttributel nstanceOf(), 110
assertAttributel nternal Type(), 111
assertAttributel essThan(), 114
assertAttributel essThanOrEqual (), 115
assertAttributeNotContaing(), 95
assertAttributeNotContainsOnly(), 97

, 78,79, 80, 129

146

Index

assertAttributeNotEmpty(), 99
assertAttributeNotEquals(), 102
assertAttributeNotl nstanceOf(), 110
assertAttributeNotl nternal Type(), 111
assertAttributeNotSame(), 120
assertAttributeSame(), 120
assertClassHasAttribute(), 93
assertClassHasStati cAttribute(), 95
assertClassNotHasAttribute(), 93
assertClassNotHasStati cAttribute(), 95
assertContaing(), 95
assertContainsOnly(), 97
assertContainsOnlyl nstancesOf (), 98
assertCount(), 99

assertEmpty(), 99

assertEquals(), 102

assertEqual XML Structure(), 100
assertFalse(), 106

assertFileEquals(), 107
assertFileExists(), 108
assertFileNotEquals(), 107
assertFileNotExists(), 108
assertFinite(), 110

assertGreater Than(), 108
assertGreater ThanOrEqual (), 109
assertInfinite(), 110
assertlnstanceOf(), 110

assertInterna Type(), 111
assertJsonkileEqual sisonFile(), 112
assertJsonkileNotEqual sisonFile(), 112
assertJsonStringEqualssonFile(), 112
assertJsonStringEqual sJsonString(), 113
assertJsonStringNotEqual sJsonFile(), 112
assertJsonStringNotEqual sJsonString(), 113
assertLessThan(), 114
assertLessThanOrEqual(), 115
assertNan(), 115

assertNotContains(), 95
assertNotContainsOnly(), 97
assertNotCount(), 99
assertNotEmpty(), 99
assertNotEquals(), 102

assertNotl nstanceOf(), 110
assertNotlnterna Type(), 111
assertNotNull(), 116
assertNotRegEXp(), 117
assertNotSame(), 120

assertNull(), 116
assertObjectHasAttribute(), 117
assertObjectNotHasAttribute(), 117
assertPostConditions(), 28
assertPreConditions(), 28
assertRegEXp(), 117

assertSame(), 120
assertStringEndsNotWith(), 121
assertStringEndswith(), 121
assertStringEqualskile(), 122
assertStringM atchesFormat(), 118

147

Index

assertStringM atchesFormatFile(), 119
assertStringNotEqualsFile(), 122
assertStringNotM atchesFormat(), 118
assertStringNotM atchesFormatFile(), 119
assertStringStartsNotWith(), 122
assertStringStartswith(), 122
assertThat(), 123

assertTrue(), 125
assertXmiFileEqualsXmiFile(), 126
assertXmiFileNotEqualsXmlFile(), 126
assertXmiStringequalsXmiFile(), 127
assertXml StringEqualsXml String(), 128
assertXmiStringNotEqualsXmlFile(), 127
assertXmi StringNotEqualsXmi String(), 128
attribute(),

attributeEqual To(),

Automated Documentation, 82

C
Change Risk Anti-Patterns (CRAP) Index,
classHasAttribute(),
classHasStati cAttribute(),
Code Coverage, , , , , , 77,132,142
Branch Coverage,
Classand Trait Coverage,
Function and Method Coverage,
Line Coverage,
Opcode Coverage,
Path Coverage,
Whitelist, 78
Configuration, ,
Constant, 144
containg(),
containsOnly(),
containsOnlylnstancesOf(),
createMock(), 59, 59, 60, 60, 61, 61, 62, 62

D

Data-Driven Tests, 90

Defect Locdlization, 6
Depended-On Component, 58
Documenting Assumptions, 82

E

equal To(),

Error, 20

Error Handler, 14

Exception, 12

expectException(), 12
expectExceptionCode(), 13
expectExceptionMessage(), 13
expectExceptionM essageRegEXp(), 13
Extreme Programming, 82

F

Failure, 20
fileExists(),

148

Index

Fixture, 27
Fluent Interface, 58

G

getMockBuilder(), 68
getMockForAbstractClass(), 70
getMockForTrait(), 69
getMockFromwsdl (), 70
Global Variable, 30, 144
greaterThan(),
greaterThanOrEqual (),

H
hasAdtribute(),

identical To(),
include_path,
Incomplete Test, 35
isFalse(),
islnstanceOf(),
isNull(),

isTrue(),

isType(),

JSON,

L

lessThan(),
lessThanOrEqual (),
Lodfile, ,
Logging, 84, 142
logical And(),
logicalNot(),
logical Or(),

logical Xor(),

M

matchesRegularExpression(),
method(), 59, 59, 60, 60, 61, 61, 62, 62
Mock Object, 63, 64

O

onConsecutiveCalls(), 62
onNotSuccessful Test(), 28

P

PHP Error, 14

PHP Notice, 14

PHP Warning, 14

php.ini, 144
phpunit\framework\TestCase, 5, 87
PHPUnNIt_Extensions RepeatedTest, 90
PHPUnNIt_Extensions TestDecorator, 90

PHPUnNit_Framework_BaseTestListener, 89

149

Index

PHPUnNit_Framework_Error, 14
PHPUnNit_Framework_Error_Notice, 14
PHPUnNit_Framework_Error_Warning, 14
PHPUnNit_Framework_IncompleteTest, 35
PHPUnNit_Framework_IncompleteTestError, 35
PHPUnNit_Framework_Test, 90
PHPUnNit_Framework_TestListener, , 88, 143
PHPUnNit_Runner_TestSuitel oader,
PHPUnNit_Util_Printer,

PHP_Invoker, 136, 136, 138

Process | solation,

R
Refactoring, 75
Report,
returnArgument(), 60
returnCallback(), 61
returnSelf(), 60
returnVaueMap(), 61

S

Selenium RC, 144
setUp(), 27, 28, 28
setUpBeforeClass, 30
setUpBeforeClass(), 28, 28
stringContains(),
stringEndsWith(),
stringStartswith(),

Stub, 58

Stubs, 82

System Under Test, 58

T
tearDown(), 27, 28, 28
tearDownAfterClass, 30
tearDownAfterClass(), 28, 28
Template Method, 27, 28, 28, 28
Test Dependencies, 5

Test Double, 58
Test Groups, , , , 142
Test Isolation, , , , 30

Test Listener, 143

Test Suite, 32, 141

TestDox, 82, 138
throwException(), 62
timeoutForLargeTests, 136
timeoutForMediumTests, 136
timeoutForSmall Tests, 138

W
Whitelist, 142
will(), 60, 60, 61, 61, 62, 62
willReturn(), 59, 59

X

Xdebug, 77
XML Configuration, 33

150

Appendix E. Bibliography
[Astels2003] Test Driven Development. David Astels. Copyright © 2003. Prentice Hall. ISBN 0131016490.

[Beck2002] Test Driven Development by Example. Kent Beck. Copyright © 2002. Addison-Wesley. I1SBN
0-321-14653-0.

[Meszaros2007] xUnit Test Patterns: Refactoring Test Code. Gerard Meszaros. Copyright © 2007. Addison-Wes-
ley. ISBN 978-0131495050.

151

Appendix F. Copyright

Copyright (c) 2005-2016 Sebasti an Ber gnann.

This work is licensed under the Creative Commons Attribution 3.0
Unported License

A summary of the license is given below, followed by the full |egal
text.

You are free:

* to Share - to copy, distribute and transnit the work
* to Remix - to adapt the work

Under the follow ng conditions:

Attribution. You nust attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

* For any reuse or distribution, you nust nmake clear to others
the license terms of this work. The best way to do this is with
alink to this web page

* Any of the above conditions can be waived if you get
perm ssion fromthe copyright hol der.

* Nothing in this license inpairs or restricts the author's nora
rights.

Your fair dealing and other rights are in no way affected by the
above.

This is a human-readabl e sunmary of the Legal Code (the ful
l'i cense) bel ow.

Creative Commons Legal Code
Attribution 3.0 Unported

CREATI VE COMMONS CORPORATION IS NOT A LAW FI RM AND DOES NOT PROVI DE
LEGAL SERVI CES. DI STRIBUTI ON OF THI S LI CENSE DOES NOT CREATE AN
ATTORNEY- CLI ENT RELATI ONSHI P. CREATI VE COMMONS PROVI DES THI S

| NFORVATI ON ON AN "AS-1S" BASI S. CREATI VE COWONS MAKES NO
WARRANTI ES REGARDI NG THE | NFORVATI ON PROVI DED, AND DI SCLAI MS

LI ABI LI TY FOR DAVMAGES RESULTI NG FROM | TS USE.

Li cense

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE TERVS OF THI S
CREATI VE COVMMONS PUBLI C LI CENSE (" CCPL" OR "LICENSE"). THE WORK | S
PROTECTED BY COPYRI GHT AND/ OR OTHER APPLI CABLE LAW ANY USE OF THE
WORK OTHER THAN AS AUTHORI ZED UNDER THI S LI CENSE OR COPYRI GHT LAW
I'S PRCHI Bl TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YOU ACCEPT AND
AGREE TO BE BCUND BY THE TERMS OF THI S LI CENSE. TO THE EXTENT TH S
LI CENSE MAY BE CONSI DERED TO BE A CONTRACT, THE LI CENSOR GRANTS YQOU

152

Copyright

THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDI TI ONS.

1. Definitions

a. "Adaptation" neans a work based upon the Work, or upon the
Work and ot her pre-existing works, such as a translation,
adaptati on, derivative work, arrangenent of nusic or other
alterations of a literary or artistic work, or phonogram or
perfornmance and i ncl udes ci nemat ographi ¢ adaptati ons or any
other formin which the Work may be recast, transforned, or
adapted including in any formrecogni zably derived fromthe
original, except that a work that constitutes a Collection
wi Il not be considered an Adaptation for the purpose of this
Li cense. For the avoi dance of doubt, where the Work is a
musi cal work, performance or phonogram the synchroni zati on of
the Work in tinmed-relation with a nmoving i mage ("synching")
wi Il be considered an Adaptation for the purpose of this
Li cense.

b. "Collection" nmeans a collection of literary or artistic works,
such as encycl opedi as and ant hol ogi es, or perfornances,
phonograns or broadcasts, or other works or subject matter
ot her than works listed in Section 1(f) bel ow, which, by
reason of the selection and arrangenent of their contents,
constitute intellectual creations, in which the Wrk is
included in its entirety in unnmodified formalong with one or
nore ot her contributions, each constituting separate and
i ndependent works in thensel ves, which together are assenbl ed
into a collective whole. A work that constitutes a Collection
wi Il not be considered an Adaptation (as defined above) for
t he purposes of this License

c. "Distribute" neans to nmake available to the public the
original and copies of the Wrk or Adaptation, as appropriate,
t hrough sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or
entities that offer(s) the Wrrk under the terns of this License

e. "Original Author" means, in the case of a literary or artistic
wor k, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of
a performance the actors, singers, nusicians, dancers, and
ot her persons who act, sing, deliver, declaim play in,
interpret or otherwise performliterary or artistic works or
expressions of folklore; (ii) in the case of a phonogramthe
producer being the person or legal entity who first fixes the
sounds of a performance or other sounds; and, (iii) in the
case of broadcasts, the organization that transnits the
br oadcast .

f. "Work" neans the literary and/or artistic work offered under
the terms of this License including without linmitation any
production in the literary, scientific and artistic donain
what ever may be the node or formof its expression including
digital form such as a book, pamphlet and other writing; a
| ecture, address, sernon or other work of the sane nature; a
dramatic or dramatico-nusical work; a choreographic work or
entertai nment in dunb show, a nusical conposition with or
wi t hout words; a cinenatographic work to which are assinil ated
wor ks expressed by a process anal ogous to cinenat ography; a
wor k of draw ng, painting, architecture, scul pture, engraving

153

Copyright

or |ithography; a photographic work to which are assinilated
wor ks expressed by a process anal ogous to photography; a work
of applied art; an illustration, map, plan, sketch or three-

di nensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a
phonogram a conpilation of data to the extent it is protected
as a copyrightable work; or a work perforned by a variety or
circus perforner to the extent it is not otherw se considered
aliterary or artistic work.

g. "You" neans an individual or entity exercising rights under
this License who has not previously violated the terns of
this License with respect to the Wirk, or who has received
express permission fromthe Licensor to exercise rights under
this License despite a previous violation

h. "Publicly Perform nmeans to performpublic recitations of the
Wrk and to comunicate to the public those public
recitations, by any neans or process, including by wire or
wi rel ess neans or public digital performances; to nake
avai l able to the public Wrks in such a way that nenbers of
the public may access these Works froma place and at a pl ace
i ndi vidually chosen by them to performthe Wirk to the public
by any nmeans or process and the comunication to the public of
the perfornmances of the Wirk, including by public digita
performance; to broadcast and rebroadcast the Wrk by any
nmeans i ncl udi ng signs, sounds or inmges.

i . "Reproduce" neans to nake copies of the Wrk by any neans
including without limtation by sound or visual recordi ngs and
the right of fixation and reproducing fixations of the Wrk,
including storage of a protected performance or phonogramin
digital formor other electronic nmedium

Fair Dealing Rights. Nothing in this License is intended to
reduce, linmt, or restrict any uses free fromcopyright or rights
arising fromlimtations or exceptions that are provided for in
connection with the copyright protection under copyright |aw or
ot her applicable | aws.

Li cense Grant. Subject to the ternms and conditions of this

Li cense, Licensor hereby grants You a worl dwi de, royalty-free
non-excl usi ve, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Wrk as stated
bel ow.

a. to Reproduce the Wirk, to incorporate the Wirk into one or
nore Collections, and to Reproduce the Wrk as incorporated
in the Collections;

b. to create and Reproduce Adaptations provided that any such
Adapt ation, including any translation in any nedium takes
reasonabl e steps to clearly | abel, demarcate or otherw se
identify that changes were nade to the original Wrk. For
exanpl e, a translation could be marked "The origi nal work was
transl ated from English to Spanish," or a nodification could
indicate "The original work has been nodified.";

c. to Distribute and Publicly Performthe Wrk including as
incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptati ons.

e. For the avoi dance of doubt:

154

Copyright

i . Non-wai vabl e Conpul sory License Schemes. |In those
jurisdictions in which the right to collect royalties
through any statutory or conpul sory |icensing schene cannot
be wai ved, the Licensor reserves the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License

ii. Wiivable Compul sory License Schenes. In those
jurisdictions in which the right to collect royalties
t hrough any statutory or conpul sory licensing schene can
be wai ved, the Licensor waives the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schenes. The Licensor waives the right
to collect royalties, whether individually or, in the
event that the Licensor is a nmenber of a collecting
society that administers voluntary |icensing schenes, via
that society, fromany exercise by You of the rights
granted under this License.

The above rights nay be exercised in all media and formats whet her
now known or hereafter devised. The above rights include the right
to make such nodifications as are technically necessary to exercise
the rights in other media and formats. Subject to Section 8(f), al
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limted by the follow ng restrictions

a. You may Distribute or Publicly Performthe Work only under the
terns of this License. You nmust include a copy of, or the
Uni form Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform You may
not offer or inpose any terns on the Work that restrict the
terns of this License or the ability of the recipient of the
Wrk to exercise the rights granted to that recipient under
the ternms of the License. You nay not sublicense the Wrk. You
nmust keep intact all notices that refer to this License and to
the disclainer of warranties with every copy of the Wrk You
Distribute or Publicly Perform Wen You Distribute or
Publicly Performthe Wrk, You may not inpose any effective
t echnol ogi cal nmeasures on the Work that restrict the ability
of a recipient of the Work from You to exercise the rights
granted to that recipient under the terns of the License. This
Section 4(a) applies to the Wirk as incorporated in a
Col l ection, but this does not require the Collection apart
fromthe Work itself to be nmade subject to the terns of this
Li cense. If You create a Coll ection, upon notice from any
Li censor You nmust, to the extent practicable, renove fromthe
Collection any credit as required by Section 4(b), as
requested. If You create an Adaptation, upon notice from any
Li censor You nmust, to the extent practicable, renove fromthe
Adapt ation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Performthe Wrk or any
Adapt ati ons or Collections, You nust, unless a request has
been nmade pursuant to Section 4(a), keep intact all copyright
notices for the Wrk and provi de, reasonable to the nedi um or
nmeans You are utilizing: (i) the nanme of the Original Author
(or pseudonym if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity,

155

Copyright

journal) for attribution ("Attribution Parties") in Licensor's
copyright notice, ternms of service or by other reasonable
nmeans, the nane of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably
practicable, the URI, if any, that Licensor specifies to be
associated with the Wrk, unless such URI does not refer to

t he copyright notice or licensing information for the Wrk;
and (iv), consistent with Section 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Ori gi nal
Aut hor," or "Screenplay based on original Wrk by Oiginal
Author"). The credit required by this Section 4 (b) may be

i mpl enented in any reasonabl e manner; provided, however, that
in the case of a Adaptation or Collection, at a m ni num such
credit will appear, if a credit for all contributing authors
of the Adaptation or Collection appears, then as part of these
credits and in a manner at |east as prominent as the credits
for the other contributing authors. For the avoi dance of
doubt, You nmay only use the credit required by this Section
for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or inply any connection with,
sponsorshi p or endorsenent by the Oiginal Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use
of the Work, without the separate, express prior witten

perm ssion of the Oiginal Author, Licensor and/or

Attribution Parties.

Except as otherwise agreed in witing by the Licensor or as
may be ot herwi se permitted by applicable law, if You
Reproduce, Distribute or Publicly Performthe Wrk either by
itself or as part of any Adaptations or Collections, You nust
not distort, nutilate, nodify or take other derogatory action
inrelation to the Wrk which would be prejudicial to the
Original Author's honor or reputation. Licensor agrees that in
those jurisdictions (e.g. Japan), in which any exercise of the
right granted in Section 3(b) of this License (the right to
make Adaptations) would be deenmed to be a distortion,
mutilation, nodification or other derogatory action

prejudicial to the Original Author's honor and reputation, the
Li censor will waive or not assert, as appropriate, this
Section, to the fullest extent pernitted by the applicable
national law, to enable You to reasonably exercise Your right
under Section 3(b) of this License (right to nake Adaptati ons)
but not otherwi se.

5. Representations, Warranties and Di scl ai ner

UNLESS OTHERW SE MUTUALLY AGREED TO BY THE PARTI ES I N WRI TI NG,

LI CENSOR OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR
WARRANTI ES OF ANY KI ND CONCERNI NG THE WORK, EXPRESS, | MPLI ED,
STATUTORY OR OTHERW SE, | NCLUDI NG W THOUT LI M TATI ON, WARRANTI ES OF
TI TLE, MERCHANTI BILITY, FITNESS FOR A PARTI CULAR PURPCSE,

NONI NFRI NGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,

ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRCRS, WHETHER OR NOT

DI SCOVERABLE. SQOVE JURI SDI CTI ONS DO NOT ALLOW THE EXCLUSI ON OF

I MPLI ED WARRANTI ES, SO SUCH EXCLUSI ON MAY NOT APPLY TO YQU.

6.

Limitation on Liability. EXCEPT TO THE EXTENT REQUI RED BY

APPLI CABLE LAW I N NO EVENT WLL LI CENSOR BE LI ABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECI AL, | NClI DENTAL, CONSEQUENTI AL, PUNI TI VE
OR EXEMPLARY DAMAGES ARI SING QUT OF THI S LI CENSE OR THE USE OF
THE WORK, EVEN | F LI CENSOR HAS BEEN ADVI SED OF THE PGOSSI Bl LI TY

OF SUCH DANAGES.

156

Copyright

7. Term nation

a.

This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terns of this

Li cense. Individuals or entities who have received Adaptations
or Collections from You under this License, however, wll not
have their licenses term nated provided such individuals or
entities remain in full conpliance with those |icenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
this License.

Subj ect to the above terns and conditions, the |license granted
here is perpetual (for the duration of the applicable
copyright in the Wirk). Notwi thstandi ng the above, Licensor
reserves the right to release the Wrk under different |icense
ternms or to stop distributing the Work at any tine; provided,
however that any such election will not serve to withdraw this
Li cense (or any other license that has been, or is required to
be, granted under the terms of this License), and this License
will continue in full force and effect unless term nated as
stated above.

8. M scel | aneous

a.

Each tine You Distribute or Publicly Performthe Wrk or a
Col l ection, the Licensor offers to the recipient a license to
the Work on the sanme terns and conditions as the |license
granted to You under this License.

Each tine You Distribute or Publicly Performan Adaptation
Li censor offers to the recipient a license to the origina
Wrk on the sane ternms and conditions as the |icense granted
to You under this License.

If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the renminder of the terns of this License
and without further action by the parties to this agreenent,
such provision shall be reformed to the m ni nrum extent
necessary to nake such provision valid and enforceabl e.

No termor provision of this License shall be deened waived
and no breach consented to unl ess such wai ver or consent shal
be in witing and signed by the party to be charged with such
wai ver or consent.

This License constitutes the entire agreenent between the
parties with respect to the Work licensed here. There are no
under st andi ngs, agreenments or representations with respect to
the Work not specified here. Licensor shall not be bound by
any additional provisions that nay appear in any comunication
fromYou. This License may not be nodified without the mnutual
witten agreenent of the Licensor and You.

The rights granted under, and the subject matter referenced,
in this License were drafted utilizing the terni nol ogy of the
Berne Convention for the Protection of Literary and Artistic
Wirks (as anended on Septenber 28, 1979), the Rome Convention
of 1961, the WPO Copyright Treaty of 1996, the W PO

Per f ormances and Phonograns Treaty of 1996 and the Universa
Copyright Convention (as revised on July 24, 1971). These
rights and subject natter take effect in the rel evant
jurisdiction in which the License terns are sought to be

157

Copyright

enforced according to the correspondi ng provisions of the

i mpl enentation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under
appl i cabl e copyright |aw includes additional rights not
granted under this License, such additional rights are deened
to be included in the License; this License is not intended to
restrict the license of any rights under applicable |aw

Creative Conmons is not a party to this License, and nakes no
warranty whatsoever in connection with the Wrk. Creative Commobns
will not be liable to You or any party on any |egal theory for any
danmages what soever, including without |limitation any general,

speci al, incidental or consequential damages arising in connection
to this license. Notw thstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the linmted purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commpns does not authorize
the use by either party of the tradenark "Creative Commobns" or any
related tradenmark or | ogo of Creative Commpns wi thout the prior
witten consent of Creative Commons. Any pernitted use will be in
conpliance with Creative Commobns' then-current trademark usage

gui del i nes, as may be published on its website or otherw se nade
avai | abl e upon request fromtime to tinme. For the avoi dance of
doubt, this trademark restriction does not formpart of this

Li cense.

Creative Conmons nay be contacted at http://creativecomons. org/.

158

	PHPUnit Manual
	Table of Contents
	Chapter 1. Installing PHPUnit
	Requirements
	PHP Archive (PHAR)
	Windows
	Verifying PHPUnit PHAR Releases

	Composer
	Optional packages

	Chapter 2. Writing Tests for PHPUnit
	Test Dependencies
	Data Providers
	Testing Exceptions
	Testing PHP Errors
	Testing Output
	Error output
	Edge cases

	Chapter 3. The Command-Line Test Runner
	Command-Line Options

	Chapter 4. Fixtures
	More setUp() than tearDown()
	Variations
	Sharing Fixture
	Global State

	Chapter 5. Organizing Tests
	Composing a Test Suite Using the Filesystem
	Composing a Test Suite Using XML Configuration

	Chapter 6. Risky Tests
	Useless Tests
	Unintentionally Covered Code
	Output During Test Execution
	Test Execution Timeout
	Global State Manipulation

	Chapter 7. Incomplete and Skipped Tests
	Incomplete Tests
	Skipping Tests
	Skipping Tests using @requires

	Chapter 8. Database Testing
	Supported Vendors for Database Testing
	Difficulties in Database Testing
	The four stages of a database test
	1. Clean-Up Database
	2. Set up fixture
	3–5. Run Test, Verify outcome and Teardown

	Configuration of a PHPUnit Database TestCase
	Implementing getConnection()
	Implementing getDataSet()
	What about the Database Schema (DDL)?
	Tip: Use your own Abstract Database TestCase

	Understanding DataSets and DataTables
	Available Implementations
	Flat XML DataSet
	XML DataSet
	MySQL XML DataSet
	YAML DataSet
	CSV DataSet
	Array DataSet
	Query (SQL) DataSet
	Database (DB) Dataset
	Replacement DataSet
	DataSet Filter
	Composite DataSet

	Beware of Foreign Keys
	Implementing your own DataSets/DataTables

	The Connection API
	Database Assertions API
	Asserting the Row-Count of a Table
	Asserting the State of a Table
	Asserting the Result of a Query
	Asserting the State of Multiple Tables

	Frequently Asked Questions
	Will PHPUnit (re-)create the database schema for each test?
	Am I required to use PDO in my application for the Database Extension to work?
	What can I do, when I get a “Too much Connections” Error?
	How to handle NULL with Flat XML / CSV Datasets?

	Chapter 9. Test Doubles
	Stubs
	Mock Objects
	Prophecy
	Mocking Traits and Abstract Classes
	Stubbing and Mocking Web Services
	Mocking the Filesystem

	Chapter 10. Testing Practices
	During Development
	During Debugging

	Chapter 11. Code Coverage Analysis
	Software Metrics for Code Coverage
	Whitelisting Files
	Ignoring Code Blocks
	Specifying Covered Methods
	Edge Cases

	Chapter 12. Other Uses for Tests
	Agile Documentation
	Cross-Team Tests

	Chapter 13. Logging
	Test Results (XML)
	Test Results (TAP)
	Test Results (JSON)
	Code Coverage (XML)
	Code Coverage (TEXT)

	Chapter 14. Extending PHPUnit
	Subclass phpunit\framework\TestCase
	Write custom assertions
	Implement PHPUnit_Framework_TestListener
	Subclass PHPUnit_Extensions_TestDecorator
	Implement PHPUnit_Framework_Test

	Appendix A. Assertions
	assertArrayHasKey()
	assertClassHasAttribute()
	assertArraySubset()
	assertClassHasStaticAttribute()
	assertContains()
	assertContainsOnly()
	assertContainsOnlyInstancesOf()
	assertCount()
	assertEmpty()
	assertEqualXMLStructure()
	assertEquals()
	assertFalse()
	assertFileEquals()
	assertFileExists()
	assertGreaterThan()
	assertGreaterThanOrEqual()
	assertInfinite()
	assertInstanceOf()
	assertInternalType()
	assertJsonFileEqualsJsonFile()
	assertJsonStringEqualsJsonFile()
	assertJsonStringEqualsJsonString()
	assertLessThan()
	assertLessThanOrEqual()
	assertNan()
	assertNull()
	assertObjectHasAttribute()
	assertRegExp()
	assertStringMatchesFormat()
	assertStringMatchesFormatFile()
	assertSame()
	assertStringEndsWith()
	assertStringEqualsFile()
	assertStringStartsWith()
	assertThat()
	assertTrue()
	assertXmlFileEqualsXmlFile()
	assertXmlStringEqualsXmlFile()
	assertXmlStringEqualsXmlString()

	Appendix B. Annotations
	@author
	@after
	@afterClass
	@backupGlobals
	@backupStaticAttributes
	@before
	@beforeClass
	@codeCoverageIgnore*
	@covers
	@coversDefaultClass
	@coversNothing
	@dataProvider
	@depends
	@expectedException
	@expectedExceptionCode
	@expectedExceptionMessage
	@expectedExceptionMessageRegExp
	@group
	@large
	@medium
	@preserveGlobalState
	@requires
	@runTestsInSeparateProcesses
	@runInSeparateProcess
	@small
	@test
	@testdox
	@ticket
	@uses

	Appendix C. The XML Configuration File
	PHPUnit
	Test Suites
	Groups
	Whitelisting Files for Code Coverage
	Logging
	Test Listeners
	Setting PHP INI settings, Constants and Global Variables
	Configuring Browsers for Selenium RC

	Appendix D. Index
	Index

	Appendix E. Bibliography
	Appendix F. Copyright

