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Appendix B. Inviscid strong vortex-shock wave interaction
This problem has been proposed to participants of the 5th International Workshop on High-Order CFD Methods (held in Kissimmee, FL, USA, 6-7 January 2018) as an advanced test case for assessing the performance of high-order shock-capturing methods (order of accuracy > 2). It was particularly discovered from the in-depth study (see the related presentations in the web site [30]) that all the computations made suffer from conspicuous numerical artifacts – post-shock oscillations appearing after the vortex bends the shock front (which is initially plane). In this appendix we demonstrate the capacity of the artificial viscosity approach to suppress considerably these artefacts.

Problem formulation. Hereinafter we consider a polytropic gas with ( = 1.4. The computational domain [0, 2]×[0, 1] in the xy plane is covered with a regular square mesh of size h. Initially, a stationary shock with shock-wave Mach number MS = 1.5 is located at x = 0.5, and a strong isentropic vortex with Mv = 0.9 is centered at (xc, yc) = (0.25, 0.5). Hence, the flow field in the region x < 0.5 is a superposition of two flow patterns: a mean upstream flow with (ux, uy, (, p) = (uS, 0, 1, 1), with uS = MS
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, and an isentropic vortex (perturbation of the mean upstream flow). The vortex rotates counter-clockwise with the angular velocity defined as
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where r is the distance from the vortex core (xc, yc), um = Mv
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 is the maximum angular velocity (at r = a), and (a, b) = (0.075, 0.175). The downstream flow conditions (x > 0.5) are defined from the values of the mean upstream flow and MS. The left and right boundaries are considered as a supersonic inlet and a subsonic outlet, respectively. The bottom and upper boundaries are solid walls. The output time is t = 0.7. More detailed information on the initialization process can be found in [30].

Numerical artifacts. First we recall that the carbuncle instability is not appearing at MS = 1.5. But the test case under study has to do with another problem from Quirk’s catalogue [2], namely the problem of computing a slowly moving shock [31]. Actually, after the vortex reaches the shock front, the latter starts to move slowly through the grid in a two-dimensional manner. Spurious low-frequency perturbations in the downstream flow are much expected in such a case.

Fig. B.19 shows the numerical results obtained by the RK3-WENO5 scheme with the grid spacing h = 1/600 (top plots) and h = 1/900 (bottom plots); the HLLC Riemann solver was used within this study. The schlieren images (here 
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) obtained without adding the artificial viscosity approach to the basic scheme (left plots) reveal strong post-shock oscillations of long wavelengths ((15h). When the artificial viscosity is applied, these oscillations appear to be substantially damped – they are barely visible in the right plots of Fig. B.19. Besides, the RK3-WENO5 scheme in its original form demonstrates some kind of instability ahead of the split vortex (see arrows in the left plots), whereas being completed with the sAV approach it provides stable solution.

Fig. B.20 shows the profiles of the density (left plots) and the entropy (
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; right plots) at x = 0.52 (just behind the leading shock) as compared with the reference solution (to be described later). Here we examine the results obtained with the grid spacing h = 1/600. Top plots demonstrate the results by the basic RK3-WENO5 scheme; they are burdened with severe perturbations, of which the most pronounced effect occurs in the entropy. Adding the artificial viscosity (bottom plots) yields a large dividend in quality of the solution. Thus, the amplitude of artifactual oscillations in the entropy decreases by a factor of 7.

Reference solution. We have used the RK3-WENO5 scheme with sAV approach and the grid spacing h = 1/1200 to obtain the reference solution. A crucially new practice here is that we reformulated the problem, subtracting the value of uS from the x–component of velocity in both the upstream and downstream flow conditions. So, in the new formulation the mean upstream flow becomes motionless, and the leading shock wave is moving to the left; in so doing we avoid computing a slowly moving shock. Besides, to save computing resources we have started the computation with the domain 0 ≤ x ≤ 0.5 + 10h and then, as needed from time to time, we lengthened the domain on the left and shortened it on the right in segments of 10h. When saving the computational results we restored the velocity and grid coordinate by: ux + uS → ux,  x + uS t → x.

It is pertinent to discuss the reference solution in some detail. Fig. B.21 shows the numerical schlieren images as well as the entropy and vorticity maps (the vorticity 
[image: image6.wmf]//

yx

uxuy

w

=¶¶-¶¶

) at times t = 0.15, 0.25, 0.35 0.5 and 0.7. By inspecting these plots one can reveal the origins of distinct flow discontinuities and follow their evolution. Thus, at t  ≥ 0.25 the reflected shocks (arrows 1 in the top plots) and the contact discontinuities (arrows 2 in the bottom plots) that emerge from the triple points (circled in the plots) are clearly visible. One can also note the acoustic waves that emanate from the strongly disturbed vortex; some of them become the weak shocks (for instance, see arrows 3 in the top plots). The entropy maps (middle plots) are highly informative as well. Indeed, initially the upstream and downstream flows are both isentropic, but after the vortex distorts the shock the downstream flow diversified. Moving out of shock waves, each fluid particle preserves entropy. Therefore by tracking the movement of entropy contours we can monitor the flow of gas. The middle plots show the entropy map in a gray scale and, additionally, the contours s = 1.018. Thus, the selected contours clearly show how initially a single mass of fluid is torn apart. As this takes place, extremely thin bridges remain between the individual parts of the fluid; these bridges, however, are eroded due to the numerical dissipation. The effect of this kind can also be revealed by tracking the regions s > 1.12 (black flooding).
From the aforesaid it follows that computing the test case under discussion is a challenging task.

Remark. When computing this test problem, the following procedure has been used to remove the start-up errors that arise in the course of smearing the initial shock front (and forming the shock layer). At time t = 0.075/uS (the vortex reaches the shock wave), the exact downstream values were reset at all the grid cells behind the shock layer.
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Fig. B.19. Strong vortex-shock wave interaction. The numerical schlieren images obtained by the RK3-WENO5 scheme in its original form (left) and with the sAV approach (right) on the grid with h = 1/600 (top) and h = 1/900 (bottom).
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Fig. B.20. Strong vortex-shock wave interaction. The profiles of the density (left) and entropy (plots) at x = 0.52 as compared with the reference solution. The data obtained by the RK3-WENO5 scheme in its original form (top) and with the sAV approach (bottom) on the grid with h = 1/600.
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Fig. B.21. Strong vortex-shock wave interaction. The reference solution at times t = 0.15, 0.25, 0.35 0.5 and 0.7 (from the left to the right). The numerical schlieren images (top), the entropy mars (middle) and the vorticity maps (bottom).
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